
TOPICS IN ALGEBRAIC TOPOLOGY, A VARIATION ON THE NOTION OF
GROTHENDIECK TOPOLOGY

ANDREA BIANCHI

Here is an attempt to continue the discussion from the last tutorial, yet not complete it. Recall that we
had a topologically enriched categoryMan of n-manifolds (without boundary, for simplicity) and embed-
dings, and that our goal is to interpret the Taylor approximations Tk : PMan → PMan of presheaves over
Man in An as a purely∞-categorical construction. Classically, instead, one has to work with presheaves
and “homotopy sheaves” with values in Top (or in Kan).

1. Conventions

All manifolds are smooth and have some dimension n ≥ 1 that we always omit. Top is the category of
compactly generated weakly Hausdorff spaces. Kan is the (strict) category of Kan complexes, i.e. a full
subcategory of simplicial sets. An is the∞-category of Kan complexes (that are now called “animae”).
So objects of Kan and of An are the same, but Kan is a strict category, An is an∞-category. There is
however a functor (of∞-categories) Kan→ An, and we will use this to pass from Kan to An (and from
presheaves with values in Kan to∞-presheaves with values in An).

Similarly taking singular sets gives a (lax) monoidal functor Top→ Kan.
The category Man of n-manifolds and embeddings is first enriched in Top; taking singular sets we

get a category enriched in Kan, and taking the coherent nerve yields an∞-category.
We always denote by C an∞-category. Our main example will be precisely Man, but we try to keep

our discussion as general as possible.

2. Definition of sieve

First, we try to give a sensible definition of sieve and Grothendieck topology that generalises [HTT
6.2.2].

Definition 2.1. Let x ∈ C be an object. A sieve (S, F ) on x is an ∞-category S with a functor of
∞-categories F : S → C/x to the comma category over x. The functor F is required to be a cartesian
fibration [HTT Definition 2.4.2.1]:

• F is an inner fibration;
• given t ∈ S with F (t) = (z → x) (an object in C/x is an arrow in C with target x) and a
morphism (y → x) → (z → x) in C/x (which is really a triangle z → y → x in C), among all
lifts s→ t of (y → x)→ (z → x) there is one which is “cartesian” (i.e. it is a final object in an
appropriate category of all possible lifts of (y → x)→ (z → x) ending at t).

We will be sometimes sloppy and write that S, rather than the couple (S, F ), is a sieve.

Example 2.2. The identity functor C/x = C/x makes C/x (better, (C/x, IdC/x)) into a sieve over x. It
is a standard fact that an identity functor is always a cartesian fibration: all lifting problems one can think
of have a (set-theoretically) unique solution!

More generally, if S ⊆ C/x is a sieve in the sense of Lurie [HTT Definition 6.2.2.1], then S is also a
sieve in the sense of Definition 2.1. Viceversa, if S ⊆ C/x is a sieve in the sense of Definition 2.1, then
it is also a Lurie-sieve.

Lurie’s conditions for a subcategory S ⊆ C/x to be a sieve are:
• S is a full subcategory of C/x: this can be rephrased as saying that S → C/x is an inner fibration;

1



2 ANDREA BIANCHI

• if (z → x) is an object in S and (y → x)→ (z → x) is a morphism in C/x, then (y → x) lies
again in S: this can be rephrased as saying that the inclusion S → C/x is a cartesian functor.

Essentially, Definition 2.1 is the same as Lurie’s one, but without the restriction that S must be a full
subcategory of C/x.

3. Constructions with sieves

Sieves can be pulled back along morphisms in C.

Definition 3.1. Let F : S → C/x be a sieve over x and let f : y → x be a morphism in C. There is a
“postcomposition functor” f ◦ − : C/y → C/x. We define the sieve f∗F as the fibre product

f∗F := S ×C/x C/y.
The functor f∗F → C/y is projection on the second coordinate.

Exercise: prove or recall that a pullback of a cartesian fibration is again a cartesian fibration.
Sieves can be extended. Classically, if S ⊆ C/x is a sieve in the sense of Lurie, then an extension of

S is a bigger full subcategory S ⊆ T ⊆ C/x, such that also T is a sieve.

Definition 3.2. Given two sieves F : S → C/x and G : T → C/x, we say that T extends S if there
is a functor H : S → T making the obvious triangle over C/x commute. We will also say that S is a
refinement of T .

Here the commutativity can be interpreted strictly, or rather as further piece of structure (a natural
equivalence between F and TH). It starts being apparent that sieves over x form rather a new infinity
category thanmerely a poset by the “being finer than” relation. Compare this with coverings of topological
spaces, which are classically only “ordered” by refinement.

This observation must play a key role when trying to define Cech cohomology for an object x ∈ C
with coefficients in a sheaf over C, as a sort of “colimit” on all coverings by refinement. But one thing at
a time, first let us define what a morphism of sieves is.

Definition 3.3. Let (S, F ) and (T,G) be sieves on x ∈ C. A morphism of sieves H : (S, F ) → (T,G)
over C/x is a triangle in Cat∞ whose horn Λ2

2 is obtained using S, T, C/x, F,G in the only sensible way.
Since we are sloppy, we use the letter H also to denote the functor S → T which is really only one side
of this triangle (the side missing in the horn).

We obtain a category Siev/x of sieves over x.

The previous definition can be globalised to the entire category C.
The last important construction we have is the following.

Definition 3.4. Let (S, F ) ∈ Siev/x and (T,G) ∈ Siev/y. A morphism of sievesH : (S, F )→ (T,G)
is given by a morphism f : x → y in C and by a functor H : S → T and by a filling of the following
square in Cat∞

S T

C/x C/y.

H

F G

f◦−

We obtain a Siev(C) of sieves over all objects of C.

Note that the assignment [F : S → C/x] 7→ x gives a functor π : Siev(C) → C: this functor assigns
to every sieve the object that the sieve is supposed to be covering. The existence of pullbacks is saying
that this canonical map π is again a cartesian fibration.

Definition 3.5. Let F : S → C/x be a sieve over x, and denote by σ : C/x → C the “source functor”
sending (y → x) 7→ y. Recall that there is a functor C/− : C → Cat∞ sending y to the comma category
C/y.
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Then we have a composition of functors

S C/x C Cat∞.
F σ C/−

We call this composition FCat∞ : S → Cat∞. For any D ∈ Cat∞ denote by κD : S → Cat∞ the
constant functor with valueD. Then there is an obvious natural transformation of functors α : FCat∞ ⇒
κC/x: for all s ∈ S we have to construct a functor from FCat∞(s) = C/σ(F (s)) to C/x, and we take the
“compose with F (s)” functor.

In the following we will consider general functors B : S → Cat∞, where (S, F ) is a sieve on x,
together with a natural transformation β : B ⇒ FCat∞ . Note then that, for any object s ∈ S, we obtain
a map of ∞-categories βs : B(s) → FCat∞(s) = C/σ(F (s)), and it will make sense to ask whether
(B(s), βs) is a sieve on σ(F (s)).

Definition 3.6. A couple (B, β) as above is good if for all s ∈ S the couple (B(s), βs) is a sieve on
σ(F (s)) (in particular, βs is a cartesian fibration).

Note that, given a good couple (B, β), we can construct a functor, sloppily also called B : S →
Siev(C), such that the following square commutes

S C/x

Siev(C) C.

F

B σ

π

Check that this is indeed an equivalent description of what a good couple is.

4. Axioms for Grothendieck topologies

A Grothendieck topology τ on C will now be a “collection” of sieves over C. Again we have to agree
what it means to be a collection. After Definition 3.3, I guess that the most natural choice is to take,
for all objects x ∈ C, a full subcategory τx of Siev/x, such that these full subcategories satisfy some
conditions. After Definition 3.4, however, it seems reasonable to define τ directly as a full subcategory
of Siev(C).

Definition 4.1. A collection τ of sieves over C is a full subcategory τ ⊆ Siev(C).

Not every collection will be a Grothendieck topology! There are some axioms to be satisfied, which
should be the analogues of the classical axioms (adapted to the∞-setting by Lurie). Here they are. So
we declare a collection τ to be a topology if it satisfies the following axioms.

4.1. Axiom 1. Each sieve C/x = C/x on x ∈ C is in τ . This clearly corresponds to the classical axiom
that C/x ⊆ C/x, seen as full subcategory, is a sieve on C/x. Now C/x → C/x is seen as the identity
cartesian fibration.

4.2. Axiom 2. The topology is closed under pullbacks. Classically this axiom says that if S ⊆ C/x is
a τ -sieve on x and f : y → x is any morphism in C, then the pullback f∗S ⊆ C/y is a τ -sieve on y. The
pullback is classically defined as the sieve spanned, as a full subcategory of C/y, by all arrows z → y

such that one composition (hence any composition) z → y
f→ x is an object in S. Rephrased, one can

consider the “composition with f” functor f ◦− : C/y → C/x and define f∗S as the preimage of S along
this functor. Now the preimage is a form of fibre product, so we have, classically,

f∗S = S ×C/x C/y.

Our new version of the axiom requires, again, that if S ∈ τ , then f∗S ∈ τ .
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4.3. Axiom 3. Coverings of coverings are coverings. This is the most difficult axiom to generalise.
Classically, we start with two sieves (S, F ) and (T,G) on x, and we know that the first is in τ . Classically,
to conclude that the second is in τ , we require that for all s ∈ S of the form s : y → x the sieve s∗T is
in τ . The problem now is that in our setting s ∈ S is not immediately a morphism with target x; rather
F (s) ∈ C/x is such. A mild requirement could be that for all s ∈ S the sieve F (s)∗T is in τ , but this
seems not to use the sieve S enough, rather only its image in C/x.

What we do is to consider an S-parametrised family of sieves over C. This is precisely what a good
functor gives us (see Definition 3.6.

The axiom becomes the following. Let (S, F ) ∈ τ be a τ -sieve on x and let (T,G) be any sieve on x.
Let (B, β) be a good functor; in particular B : S → Cat∞ is a functor. Suppose that for all s ∈ S the
functor βs : B(s) → C/σ(F (s)) makes B(s) not only into a sieve (which follows from goodness), but
also a sieve in τ . Finally, suppose that there is a commutative square in Fun(S,Cat∞) (in particular,
there is an upper horizontal arrow such that the square can be filled)

B κT

FCat∞ κC/x.

β κG

α

Then T ∈ τ .
ASIDE: Maybe there is a direct way to convert a good functor (B, β) into a sieve over x by using

straightening/unstraightening: this should give the “universal” T to which we want to apply the axiom,
and then, possibly, we need a further containment axiom stating that if H : (S, F ) → (T,G) is a mor-
phism in Siev/x and (S, F ) ∈ τ , then also (T,G) ∈ τx. The stated axiom should generalise both of
these two.

ASIDE: Axiom 3 can be rephrased as follows: if (S, F ) is τ -sieve on x and (T,G) is any sieve on x,
then we can consider two functors S → Siev(C). The first is a good functorB, i.e. making the following
diagram commute

S C/x

Siev(C) C.

B

F

σ

π

The second functor is constant equal to (T,G), so it makes the following diagram commute.

S C/x

Siev(C) C.

κT

F

κx

π

Suppose that there is a natural transformation of functors B ⇒ κT in Fun(S,Siev(C)) which is
compatible, along π and F , with the obvious natural transformation of functors σ ⇒ κx in Fun(C/x, C).
Then T ∈ τ .

Is there a simpler way to state this axiom?

5. Some examples of applications of the axioms

We analyse two examples showing that the axioms are meaningful. In the following we denote, for a
topology τ and for x ∈ C, by τx the full subcategory of Siev/x spanned by sieves which are in τ . Note
that the inclusionSiev/x ⊂ Siev(C) is not fully faithful in general, hence also the inclusion τx ⊆ τ is not
fully faithful in general. We have actually thatSiev/x is the fibre over x of the target map π : Siev(C)→
C.
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Example 5.1. Let τ be a Grothendieck topology; ifH : (T ′, G′)→ (T,G) is a morphism inSiev/x and
(T ′, G′) ∈ τx, then also (T,G) ∈ τx. To see this, consider the functor B : C/x → Siev(C) given on
objects by the formula

B(f : y → x) = f∗S = S ×C/x C/y
There is a natural transformation from B to κS : C/x→ Siev(C), given objectwise by projection on

the first coordinate in the last formula. Further composition with κH gives a natural transformation from
B⇒ κT , and one can check that this does the job.

To create with one sentence the maximum possible confusion, we note that the previous example
is saying the following: τx ⊆ Siev/x is a Lurie-co-sieve, that is, (τx)op ⊆ (Siev/x)op satisfies the
property for being a sieve in the sense of Lurie. Recall that Lurie defines a sieve on a category D to be a
full subcategory D(0) such that the inclusion D(0) ⊂ D is a cartesian fibration.

It is not true (and shouldn’t be true) in general that if H : (T ′, G′) → (T,G) is any morphism in
Siev(C) and (T ′, G′) ∈ τ , then (T,G) is also in τ : the example restricts to the case in which (T ′, G′)
and (T,G) are sieves over the same object x and H is a morphism over the identity of x. Roughly
speaking, we want that extending a covering of x gives a new covering of x, but we don’t want that if
f : y → x is a map and we τ -cover y with (T ′, G′), then every covering (T,G) on x receiving a map
from (T ′, G′) is automatically in τ ! Think of y being the emptyset, then we could take T ′ to be the empty
sieve as well and we don’t want to conclude that every sieve on x is in τ !

Draw the relevant diagrams and convince yourself that the example above does not generalise
to the following statement: if H : (T ′, G′) → (T,G) is any morphism in Siev(C) and (T ′, G′) ∈ τ ,
then (T,G) is also in τ .

Example 5.2. Let (S, F ) and (T,G) be two sieves over x. If both S, T are in τx, then also the “intersec-
tion” (or product) sieve S∩T = S×C/xT is in τx. To see this, defineB : S → Siev(C) by s 7→ F (s)∗T ,
which is a τ -sieve over σ(F (s)). The natural transformation B ⇒ κS∩T filling the square is given on
objects of S as follows.

Let s ∈ S: to construct a functor F (s)∗T → S ×C/x T it suffices to construct functors F (s)∗T → S
and F (s)∗T → T which are compatible over C/x. Recall that F (s)∗T = C/σ(F (s))×C/x T , where the
functor C/σ(F (s))→ C/x is given by F (s) ◦ −.

The functor F (s)∗T → T is easily constructed: we take the projection to T , using the last formula.
The other functor F (s)∗T → S is more involved. First we use the projection to C/σ(F (s)) to map
F (s)∗T to C/σ(F (s)).

Now we use that S → C/x is a cartesian fibration: if (z → σ(F (s))) is an object in C/σ(F (s)), then
composing with F (s) gives an arrow (z → x) → F (s) in C/x, and we can pullback s, which evidently
lies over F (s), to another object s′ ∈ S lying over (z → x). We then set the functor C/σ(F (s))→ S by
sending (z → y) 7→ s′.

The two functors F (s)∗T → S and F (s)∗T → T constructed are compatible over C/x, so we get a
functor F (s)∗T → S ×C/x T .

Check the details!

Note that the previous example can be generalised to the following statement: τx, as full subcategory
of Siev/x, is closed under finite products. (the example discusses the case of products of two objects).
Recall thatSiev/x is admits all small limits, in particular the (coherent) nerve ofSiev/x is weakly con-
tractible. Is also the coherent nerve of τx contractible? This would follow from τx being cofiltered,
which would in turn follow from τx being closed under finite limits. Are equalizers in Siev/x of
objects in τx automatically in τx?

In light of the previous examples, one can give the following definition.

Definition 5.3. Given a collection of sieves Ξ ⊂ Siev(C), we define τ(Ξ) as the smallest topology
on C containing all these sieves, i.e., the intersection of all topologies that contain these sieves. Note
that a topology τ is a full subcategory of Siev(C), such that τ is equal to the essential image of the
inclusion τ → Siev(C) (this needs a little check, but follows from the pullback axiom). Hence talking
of “intersection of topologies” makes perfectly sense.
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6. Definition of sheaf

Given a topology τ on C, we consider presheaves F on C with values in the∞-category An: if you
prefer, you can replace An by any∞-category which is complete and cocomplete (just to be sure).

Given a presheaf F on C, an object x ∈ C and a sieve (S, F ) on x, we have two obvious functors
Sop → An: the first is the constant functor with value F(x), the second is the functor s 7→ F(σ(F (s))).
There is a natural transformation between the functors, given by applying F to the natural transformation
between the two functors S → C given by σ(F ) and x respectively. The first, naive (and unfortunately
not very useful) definition of sheaf is the following.

Definition 6.1. A naive sheaf on (C, τ) is a presheaf F such that the following holds: for each x ∈ C and
each sieve (S, F ) ∈ τx, the following composition is an equivalence.

F(x)→ lim
s∈Sop

F(x)→ lim
s∈Sop

F(σ(F (s))).

Here the first map is given by the very definition of limit, and the second map is given by the natural
transformation described above.

We introduce the notation F(S) := lims∈Sop F(σ(F (s))), and think of it as the “space of sections of
F over the sieve S”.

Why is this definition too naive? Look at the following example (or first try to think yourself what can
go wrong).

Example 6.2. Let (S, F ) ∈ τx; then we can construct a new sieve (S tS, F ) over x, which is essentially
given by taking two disjoint copies of S and mapping both of them to C/x along F . There are two
inclusions S ↪→ S t S and a fold map S t S → S, all being morphisms in Siev/x.

If F is a sheaf, then we must have F(x) ' F(S), but also F(x) ' F(S t S). The latter is easily
identified with F(S)2, and it is easy to check that not only the animae F(S) and F(S)2 must be abstractly
equivalent, but really the diagonal map F(S) → F(S)2 and both projections F(S)2 → F(S) must be
equivalences. This happens only if F(x) ' F(S) ' ∗.

Sad conclusion: a naive sheaf is equivalent to the point presheaf F ≡ ∗.

The previous example shows that we should relax the condition that the canonical map F(x)→ F(S)
is an equivalence. Observe that in the case discussed in the example we have that F(S) is a retract of
F(S t S); so if F(x) ' F(S), then at least F(x) is a retract of F(S t S). These considerations lead us to
the following two definitions.

Definition 6.3. A weak sheaf F is a presheaf such that for all (S, F ) ∈ τx the natural map F(x)→ F(S)
is the inclusion of a retract.

Definition 6.4. A strong sheaf F is a presheaf such that for all (S, F ) ∈ τx there exists a refinement
(T,G) ∈ τx (i.e. there is a morphism (T,G) → (S, F ) in τx ⊆ Siev/x), such that the natural map
F(x)→ F(T ) is an equivalence.

Check that a strong sheaf is also a weak sheaf.
The other possible definition of sheaf comes from what we expect the sheafification functor should

look like. Given a presheaf F ∈ PC , we would like to mimic the classical definition (for presheaves over
topological spaces) and define its sheafification Sh(F) as the presheaf whose value at x ∈ C is

Sh(F)(x) = colim(S,F )∈(τx)opF(S).

That is, first we take sections of F over S, then we refine S and pass to the colimit.

Definition 6.5. A genuine sheaf F is a presheaf such that any of the following equivalent conditions is
satisfied:

• the canonical map F → Sh(F) is an equivalence (i.e., objectwise equivalence): that is, for all
x ∈ C the canonical map F(x)→ colim(S,F )∈(τx)opF(S) is an equivalence;

• for all x ∈ C and all (T,G) ∈ τx the canonical map F(x)→ colim(S,F )∈(τx/(T,G))opF(S) is an
equivalence;
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• for allx ∈ C there exists (T,G) ∈ τx such that the canonicalmapF(x)→ colim(S,F )∈(τx/(T,G))opF(S)
is an equivalence;

Check that the three conditions are indeed equivalent!
Is it true that a strong sheaf is also genuine, and that a genuine sheaf is also weak?
Is it true that sheafification is a left Bousfield localisation on the category PC? Is it even true that

the canonical map Sh(F)→ Sh(Sh(F)) is an equivalence?

7. Weiss topologies

At some point we want to deal with Weiss topologies on Man. Recall that Disck ⊂ Man is the full
subcategory spanned by objects of the form

∐
h Rn with 0 ≤ h ≤ k. Recall that for a presheaf F ∈ PMan

we have defined TkF as the composition of the restriction Uk : PMan → PDisck with the right Kan
extension Ranιk : PDisck → PMan. This definition makes perfect sense in the context of∞-categories,
and is even easier than the original one using model categories and derived mapping spaces and so on, at
least for me.

Our problem was to find an∞-categorical analogue of the Weiss topologies. This was hard because
the topology τk on Man (as a topologically enriched category) has a very set-theoretic and homotopy-
dependent definition.

Recall that a sieve S on x ∈ Man, in the sense of set-theoretic subpresheaf of Man(−, x), is in τk
if for all subset J ⊂ x of cardinality ≤ k there is y ∈ Man and f : y → x such that the image of the
embedding f hits all points of J .

In this set-theoretic sense, there is a particular example of a sieve in τk over x: the collection of all
embeddings y → x, for varying y, that factor through the embedding of a manifold z ∈ Disck in x. First,
this is a sieve on x: if f : y → x factors through some z → x, then so does every y′ → x obtained by
first embedding y′ → y and then y → x along f . Second, this sieve is in τk, since for every collection
of ≤ k points in x it is easy to find ≤ k discs that embed into x and hit those points. Third, this sieve is
usually non-trivial. For example every embedding y → x in the sieve tends to be (as a continuous map)
null-homotopic.

Note that for y → x to lie in the given sieve, we ask the existence of z → x through which y → x
factors, but not the choice. Indeed in the classical sense, the morphism y → x can only either be in
the sieve, or not, but if it is, it doesn’t make sense to ask how y → x is in the sieve. This additional
information can be given with our brand new notion of sieve.

Definition 7.1. We regard Man as an ∞-category and define, for all objects x ∈ Man, a the sieve
Sxk ∈ Siev/x. An object in Sxk is a triangle y → z → x in Man, with y ∈ Man and z ∈ Disck.
Such triangles span a full subcategory of Fun(∆2,Man), and we call this category Sxk . The projection
F xk : Sxk → Man/x is given by forgetting z.

Check that F xk is a cartesian fibration.
Now we would like to define τk as the topology generated by the sieves Sxk for x varying in Man.

Example 7.2. If f : x→ x′ is an embedding, then f∗Sx
′

k can be described as the category of commutative
squares in Man of the following form, where y ∈ Man and z ∈ Disck:

y x

z x′.

f

Again, check that this description is correct and that this full subcategory of Fun(∆1 ×∆1,Man)
is a sieve on x′, where the projection sends the above square to y → x′.

There is a functor from Sxk to f∗Sx
′

k , which expands a triangle y → z → x to a square as above by
composing z → x with f to obtain a map z → x′, and then forgets the “antidiagonal” map z → x.

This shows that f∗Sx
′

k can be witnessed to be a sieve in τk both because it is a pullback of a generator,
and because it is an extension of another generator.
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We now note that if F is obtained as right Kan extension of a presheaf defined over Disck, then for all
x ∈ Man we have

F(x) = lim
(z→x)∈(Disck/x)op

F(z) = lim
(y→z→x)∈(Sxk )op

F(z) = F(Sxk ).

The first equality is by definition of right Kan extension, the second is because the objects of the form
(z = z → x) span a final subcategory ofSxk which is isomorphic toDisck/x, hence the same objects span
an initial subcategory of (Sxk )op, which is isomorphic to (Disck/x)op and is equally good to compute the
limit.

This is pointing in the right direction: if F is obtained as right Kan extension of a presheaf defined
over Disck, then it behaves like a sheaf at least for the sieves Sxk of the topology τk.

Can we conclude that F is a weak/genuine/strong sheaf for τk?

8. Exercise

Now one should check whether or not it is true that there is a commutative diagram

PMan Sh(Man, τk) PMan

PMan PDisck PMan.

Shτk

Uk'

⊆

Uk Ranιk

Actually, we still have to check that Shτk : PMan → PMan really lands in the subcategory Sh(Man, τk)
of sheaves...
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