
Topics in Geometry 2021—Exercises

Niels Martin Møller and Andrea Bianchi

September 9, 2021

Week 1 — deadline on Tuesday, September 14

Exercise 1. Let c be the circle of radius r in R2 ⊂ R3 centered at the point
p = (0, R.0), with R > r > 0, and let S be the surface of revolution obtained
by rotating c around the x axis.

(i) Find sufficient conditions on R and r so that the following holds: the mean
curvature at each point p ∈ S is different from 0.1

(ii)∗ Is there a closed subsurface S ⊂ R3 of genus ≥ 2, such that the mean
curvature is non-zero at each point of S?

Exercise 2. Let S be an abstract 2-surface. Two Riemannian metrics g1
and g2 on S are conformally equivalent if there is a positive function λ : S → R
such that λg1 = g2 (in typical notation λ = Ω2). Conformal equivalence is an
equivalence relation on Riemannian metrics on S, and a conformal structure on
S is an equivalence class of such metrics.

(i) Give an example of a surface S and two non-conformally equivalent metrics
g1 and g2 on S.

An almost complex structure on S is a smooth choice of an endomorphism
Jp : TpS → TpS for all p ∈ S, such that J2

p = −IdTpS .

(ii) What does the word smooth mean in the previous definition? Of which
bundle over S is J a section?

(iii) Show that an almost complex structure induces an orientation on S.

An almost complex structure J is compatible with a Riemannian metric g on S
if Jp is an isometry of (TpS, gp) for all p ∈ S.

1The mean curvature is only defined up to a sign, because..., so being non-zero is well-
defined independently of...
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(iv) Show that two metrics g1 and g2 which are compatible with the same
almost complex structure J on S are conformally equivalent.

(v) Conversely, suppose that S is oriented and let g be a Riemannian metric
on S. Show that there exists precisely one almost complex structure J on
S which is compatible both with the orientation and with the metric g.

This shows that, for S oriented, an orientation-compatible almost complex struc-
ture and a conformal structure are equivalent structures on S.

Let now x = x(u, v) : U ⊂ R2 → V ⊂ S be a local parametrisation of S, and
assume that S is endowed with a Riemannian metric g, which in coordinates

reads g =

(
E F
F G

)
, where E,F,G are real-valued functions of u, v. Recall

that x is an isothermal parametrisation if E ≡ G and F ≡ 0.

(vi) Assume that S is oriented and let x be a local, orientation-preserving and
isothermal parametrisation. Let J be the almost complex structure on S
associated with g. How does J read in local coordinates?

(vii) Conclude: if x : U → V ⊂ S and x′ : U ′ → V are local parametrisations
of the same open subset of S, then x−1 ◦ x′ is a holomorphic map.

Thus the following two statements are one a reformulation of the other (and are
both true!):

• Every oriented Riemannian surface (S, g) admits an atlas of isothermal
charts;

• Every surface S endowed with an almost complex structure J admits an
atlas promoting it to a Riemann surface.
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Topics in Geometry 2021—Exercises

Niels Martin Møller and Andrea Bianchi

September 15, 2021

Week 2 — deadline on Tuesday, September 21

Exercise 2.1. Let S ⊂ R3 be a regular surface diffeomorphic to an (open)
Möbius band.

(i) Show that there is a point p ∈ S with vanishing mean curvature (why is
vanishing mean curvature a well-defined notion?).

(ii)∗ Find an example of a Möbius band S̃ ⊂ R3 such that for all p ∈ S̃ the
Gauss curvature does not vanish.

(iii)∗ Find an example of a Möbius band S̃ ⊂ R3 such that no point p ∈ S̃ is
umbilical.

Exercise 2.2. Let S ⊂ R3 be a closed, embedded, orientable1 surface of
genus different from 1. Prove that S must have an umbilical point.

(i) Define a vector-up-to-sign field as a continuous assignment p 7→ ±wp of a
couple of opposite vectors in TpS for all p ∈ S: formally, this is a section
of the fibre bundle TS/ ± 1, obtained by identifying fibrewise opposite
vectors; the fibre of this fibre bundle is TpS, which is topologically again
a 2-plane, but geometrically more a cone. Convince yourself that this is
indeed a fibre bundle with local trivialisations.

(ii) For all p ∈ S we can decompose TpS as an orthogonal direct sum of the
two eigenlines of the shape operator, corresponding to the two distinct
eigenvalues k1(p) < k2(p) (the principal curvatures). Prove that there is a
continuous vector-up-to-sign field ±w on S withouot zeroes, assigning to
each p ∈ S a couple of opposite, non-zero eigenvectors ±wp for the max-
imal eigenvalue k2(p) (why can the maximal eigenvalue be continuously
defined on all S?).

1Bonus exercise: a closed subsurface of R3 is automatically orientable!
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(iii) Prove that χ(S) = 0: you can either define a suitable notion of index
for vector-up-to-sign fields and prove a version of Poincare-Hopf, or you
can consider the double cover S̃ of S, containing all couples of the form
(p.v) where v ∈ {±wp} and estimate χ(S̃) = 2χ(S) using the classical
Poincare-Hopf.

(iv) Find an example of a torus in R3 with no umbilical point.

Exercise 2.3. Let M ⊂ R4 be an embedded 3-manifold.

(i) Define the shape operator Wp : Tp → Tp with the help of a unit vector field
N which has values in R4 and is normal to M (this is only locally defined,
and there are locally 2 possible choices for N).

(ii) Define an umbilical point of M as a point p ∈M for which Wp = λIdTpM .
Check that the theorem of Hopf still works: if M is connected and all
points of M are umbilical, then M is contained in a hyperplane or a
sphere.

Exercise 2.4. For each integer n ∈ Z find a vector field w on R2 having an
isolated zero at 0 ∈ R2 of index n: write an explicit formula for w, depending
on n, and draw some pictures.2

2You don’t need to attach the pictures, if this is problematic!
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Topics in Geometry 2021—Exercises

Niels Martin Møller and Andrea Bianchi

September 24, 2021

Week 3 — deadline on Tuesday, September 28

Exercise 3.1.
Let S be an oriented surface 1, and let g1 and g2 be two conformal metrics

on S, i.e. g1 = λg2 for some smooth function λ : S → R+. In this exercise we
prove that the laplacian ∆: Ω0(S) → Ω0(S) is the same with respect to the
metrics g1 and g2. Here Ω0(S) = C∞(S) denotes the vector space of smooth
functions (0-forms) on S. In order to be precise during the exercise, we denote
the two a priori different Laplacians by ∆gi , for i = 1, 2.

(i) Look up the definition of the Hodge star operator ∗gi,p : T ∗p (S)→ T ∗p (S) on
the cotangent space of each p ∈ S, and compare ∗gi,p with (the dual of)
Jp, where J is the almost complex structure associated with both g1 and
g2. Conclude that ∗g1 and ∗g2 are the same map Ω1(S)→ Ω1(S).

(ii) Look up also the definition of the star operator ∗gi,p : Λ2(T ∗p (S)) → R. Is
this operator the same for g1 and g2?

(iii) Recall that the Laplacian on 0-forms is defined2 as ∗d∗d, where d : Ω0(S)→
Ω1(S) is the usual differential (which doesn’t even need a metric to be
defined). Prove that ∆g1 ≡ λ∆g2 .

(iv) Show that in two dimensions, being a harmonic function is conformally
invariant.

(v)∗ Liouville’s Theorem for harmonic functions on Euclidean space states: If
u : Rn → R satisfies ∆δiju = 0 and u ≥ 0 everywhere, then u = 0. Here
δij denotes the (coefficients of the) Euclidean metric on Rn.

Show that Liouville’s theorem fails on hyperbolic space Hn, by giving
examples of bounded harmonic functions there.

[Hint: First do the n = 2 case in the upper half-plane model H2 = (R ×
R+,

1
y2 δij), by using Part (iv) and picking a suitable meromorphic function

f : C→ C.]

1We assume orientability and fix once and for all an orientation on S for simplicity
2At least this is a possible definition

1



Exercise 3.2. Let S be an oriented, closed surface of genus g with a Rie-
mannian metric g 3. Let γ : S1 → S be a smooth immersion, possibly with
self-intersections, and assume for simplicity that γ is self-transverse and has no
triple point 4. A bigon for γ is a choice of two disjoint arcs [a, b], [c, d] ⊂ S1

such that γ(a) = γ(c), γ(b) = γ(d), γ([a, b]) and γ([c, d]) are embedded arcs in
S, disjoint away from their endpoints, and bounding together a topological disc
in S. A monogon for γ is a choice of one arc [a, b] ⊂ S1 such that γ(a) = γ(b), γ
is otherwise injective on [a, b] and the closed curve γ[a, b] ⊂ S bounds a disc in
S. Note that if γ admits a bigon or a monogon, then we can homotope γ to a
new immersed, self-transverse curve with no triple point γ′ : S1 → S, so that γ′

has fewer self-intersections than γ. You can assume without proof the following
theorem5:

Theorem If γ is immersed, self-transverse and not embedded, but
it is isotopic to an embedded curve, then γ admits at least one bigon
or one monogon.

(i) Let δ be an embedded, non-nullhomotopic curve in S and let δ′ be a
(geodesic) curve in the homotopy class of δ that minimizes the length
(not only locally). Prove that δ′ is embedded.

(ii) Find an example6 of a surface S with a Riemannian metric g, of an em-
bedded, non-nullhomotopic curve δ in S, and of an immersed, but not
embedded geodesic δ′ : S1 → S, such that δ and δ′ are homotopic to each
other, δ′ is strictly locally minimising the length in the space of curves
homotopic to δ7, but δ′ is not a global minimum of the length in the space
of curves homotopic to δ.

Exercise 3.3. Let A = S1 × [0, 1] be the standard annulus, with local coordi-
nates (u, v), u only defined locally. Use the standard orientation on A.

(i) Convince yourselves that both ∂u and ∂v are well-defined vector fields on
A, giving for each p ∈ A a basis of the tangent plane TpA.

(ii) Consider an immersion ι : A → R3. Use the vectors fields ι∗(∂u), ι∗(∂v)
and the oriented normal N to ι to define a map eι : A→ GL3(R).

(iii) Use that π1(GL3(R)) ∼= Z2, generated for example by a 360 degree gradual
rotation around the x axis, and find two immersions ι1, ι2 : A→ R3 which
are not isotopic.

3Sorry for using the letter g twice!
4This can be achieved by small perturbations of γ.
5Very brief sketch of proof: by small perturbation make the homotopy H : S1 × I → S

smooth and self-transverse. Analyse then what happens at the finitely many times t ∈ I for
which γt = H(−, t) is not immersed or not self-transverse.

6Here you can also be qualitative, e.g. make a picture, you don’t have to find explicit
formulas.

7In other words, every small perturbation of δ′ has length bigger than δ′.
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Topics in Geometry 2021—Exercises

Niels Martin Møller and Andrea Bianchi

September 30, 2021

Week 4 — deadline on October 5th

Exercise 4.1. “The Artist’s Problem (Il Problema dell’Artista)”
Jesper Grodal’s artist friend from primary school has been poking mem-

branes with a stick (see Figure) and asks questions about special surfaces he
read about: “Is it a minimal surface? It looks like a pseudosphere to me, so is
it a constant negative Gauß curvature surface too?”.

Figure 1: How to artist: Poke a stick into a membrane.

(i) Help the artist by (more generally) classifying the complete surfaces S ⊆ R3

with both constant mean and Gauß curvatures. I.e. suppose that there
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exist constants c1, c2 ∈ R such that for all points p ∈ S holds H(p) = c1
and K(p) = c2.

(ii)∗ What happens in Part (i) if we allow ∂S 6= ∅ or a possible singular point?
(As needed for the artist’s work.)

Exercise 4.2 (3.2 plus bonus). In the entire exercise we only consider ho-
motopy, and not regular homotopy/isotopy/homotopy through immersions as
equivalence relation between curves. I have improved the definitions of monogon
and bigon to two definitions that make the theorem true. Let S be an oriented,
closed surface of genus g with a Riemannian metric g 1. Let γ : S1 → S be
a smooth immersion, possibly with self-intersections, and assume for simplic-
ity that γ is self-transverse 2. A bigon for γ is a choice of two disjoint arcs
[a, b], [c, d] ⊂ S1 such that γ(a) = γ(c), γ(b) = γ(d), and such that the induced
closed curve

γ : ([a, b] ∪ [c, d])/{a ≡ c, b ≡ d} → S
obtained by glueing the restrictions of γ to [a, b] and [c, d] is null-homotopic. A
monogon for γ is a choice of one arc [a, b] ⊂ S1 such that γ(a) = γ(b) and the
induced curve

γ : [a, b]/{a ≡ b} → S
is null-homotopic3. Note that if γ admits a bigon or a monogon, then we can
homotope γ to a new immersed, self-transverse curve γ′ : S1 → S, so that γ′

has fewer self-intersections than γ. You can assume without proof the following
theorem:

Theorem If γ is immersed, self-transverse and not embedded, but
it is homotopic to an embedded curve, then γ admits at least one
bigon or one monogon.

(i) Let α : S1 → S be a multiple of a simple closed curve, i.e. there is an
integer k ≥ 2 and another embedded curve α′ : S1 → S such that α is the
composition

S1 ·k→ S1 α′

→ S.
Suppose that α′ is not null-homotopic. Prove that α is neither null-
homotopic nor homotopic to an embedded curve, by exhibiting a small
perturbation of α which is immersed, self-transverse and has no mono-
gons and no bigons.

(ii) Prove that a closed, non-constant geodesic on S is always a multiple of a
self-transverse (but possibly not embedded) geodesic.

(iii) Let δ be an embedded, non-nullhomotopic curve in S and let δ′ be a
geodesic curve in the homotopy class of δ that minimizes the length in the
entire homotopy class of δ. Prove that δ′ is embedded.

1Sorry again for using the letter g twice!
2This can be achieved by small perturbations of γ.
3We don’t require anymore that either induced curve is injective and bounds a disc in S.
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(iv) Find an example4 of a surface S with a Riemannian metric g, of an em-
bedded, non-nullhomotopic curve δ in S, and of an immersed, but not
embedded geodesic δ′ : S1 → S, such that δ and δ′ are homotopic to each
other, δ′ is strictly locally minimising the length in the space of curves
homotopic to δ5, but δ′ is not a global minimum of the length in the space
of curves homotopic to δ.

Exercise 4.3 In this exercise we only consider non-constant geodesics. We
study the existence of non-periodic geodesics on closed (hence, in particular,
complete) connected Riemannian manifolds M . A periodic geodesic γ : R→M
is a geodesic that factors through a quotient R→ R/Z` ∼= S1, for some ` > 0.

(i) Let M be the standard, round sphere Sn: prove that all geodesics are
periodic.

(ii) Find an example of M not simply connected, such that all geodesics on M
are periodic.

(iv) Is it true that if M has the property that all geodesics are periodic, then M
must be a round sphere? Give a motivated answer! The footnote contains
a hint6.

(v) Consider the torus R2/Z2 with the Euclidean metric. State and prove
a characterisation of closed geodesics on the torus containing the words
“rational slope”.

(vi)∗ Prove that any Riemannian surface S of genus 1 admits a non-periodic
geodesic; this is for example in contrast with the genus 0, round case.

4Here you can also be qualitative, e.g. make a picture, you don’t have to find explicit
formulas.

5In other words, every small perturbation of δ′ has length bigger than δ′.
6Hint: Fubini-Study.
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Topics in Geometry 2021—Exercises

Niels Martin Møller and Andrea Bianchi

October 7, 2021

Week 5 — deadline on October 12th

Exercise 5.1 (4.3 expanded). The aim of this exercise is to show that
every Riemannian metric g on the torus T := R2/Z2 admits a non-periodic
geodesic. As we have seen, this is in contrast with what happens on other
manifolds, that admit metrics all of whose geodesics are periodic. In the entire
exercise geodesic means non-constant geodesic.

Identify π1(T ) with Z2 in the canonical way. Since π1(T ) is an abelian group,
the set of homotopy classes of curves in T is in natural bijection with Z2; e.g. the
homotopy class of null-homotopic curves corresponds to (0, 0). For (c, d) ∈ Z2

and a curve γ̃ in R2 we write γ̃ + (c, d) for the translate curve by (c, d).
Use the theorem from the lecture to find, for all (a, b) with (a, b) 6= (0, 0),

a closed geodesic γ(a,b) on T in the homotopy class (a, b) of minimal length
`(a,b) > 0.

(i) Prove that for all integer k ∈ Z \ {0}, the curve γ(a,b) run k times1 is a
length minimiser in the homotopy class (ka, kb), by showing that anyway
any curve in the homotopy class (ka, kb) has length at least |k|`(a,b).

Lift γ(a,b) to a map γ̃(a,b) : R → R2, such that γ̃(a,b)(0) ∈ [0, 1]2 (why is it
possible?), and reparametrise γ̃(a,b) by arc length (so in the following γ̃(a,b) is
assumed to be parametrised by arc length).

(ii) Prove that γ̃(a,b) minimises the length between any two of its points, i.e.,
for all s ≤ t ∈ R, the Riemannian distance between γ̃(a,b)(s) and γ̃(a,b)(t)
is precisely the length of the geodesic segment γ̃(a,b)|[s,t]. Hint: prove first
that this is true for t of the form s+ k`(a,b).

In particular γ̃(a,b) is proper and injective. In the following we also consider
γ̃(a,b) as a closed subset of R2.2

1For k negative, this means that we run −k times in the opposite direction.
2I’m also using that R2 is a complete Riemannian manifold, by Hopf-Rinow, since geodesics

can be extended for arbitrary times (this is true on the torus, hence on the plane by lifting).
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(iii) Prove that for (a, b) and (c, d) such that ad − bc 6= 0, the two geodesics
γ̃(a,b) and γ̃(c,d) intersect transversely precisely in one point of R2: prove
that at least one intersection is needed by studying the behaviour of the
two geodesics for t → ±∞ (Hint: the geoddesics are each contained in a
(Euclidean) strip of different slopes), and use (i) to prove that there is at
most one intersection. Don’t forget to exclude tangentiality by a suitable
argument!

(iv) We say that γ̃(a,b) intersects γ̃(c,d) from right if, supposing γ̃(a,b)(s) =
γ̃(c,d)(t), we have that γ̃′(a,b)(s), γ̃

′
(c,d)(t) is an oriented basis of R2. Prove

that γ̃(a,b) intersects γ̃(c,d) from right if and only if ad−bc > 0, i.e. if (a, b)
and (c, d) form an oriented basis of R2.3

(v) With the conventions of the previous point, prove that in fact every couple
of translates of γ̃(a,b) and γ̃(c,d) by elements of Z2 intersect transversely in
precisely one point, and a similar characterisation holds about which one
comes from right

Take now a sequence (an, bn) with an, bn > 0 and such that an/bn converges to
an irrational number, say π.

(vi) Prove that, up to passing to a subsequence, we can assume that γ̃(an,bn)(0)
converges to a point p ∈ [0, 1]2 and that γ̃′(an,bn)

(0) converges to a unit

vector v ∈ TpR2.4

Consider the geodesic γ̃∞ : R → R2 starting at p with velocity v, and let
γ∞ : R → T be the induced geodesic on the torus. Our aim is to prove that
γ∞ is not periodic. By uniform continuity of solutions of geodesic equations for
arbitrary finite times, for all small ε > 0 and all big t > 0 there is n > 0 such
that γ̃∞ and γ̃(an,bn) are at distance at most ε for all times in [−t, t].

(vii) Prove that γ̃∞ is length minimising for all s, t ∈ R. In particular, it is
not periodic. This exludes the case that γ∞ is periodic, descending to a
closed geodesic in the homotopy class (0, 0).

(viii) Suppose that γ∞ descends to a closed geodesic on T in the homotopy
class (a∞, b∞). Choose n as above large enough, so that for a small ε > 0
(how small should it be?) and for some t > `(a∞,b∞), the geodesics γ̃∞ and
γ̃(an,bn) are at distance at most ε for all times in [−2t, 2t]. Suppose also
that n is big enough so that abn−ban 6= 0 (why?). Choose (a′, b′) such that
ab′ − ba′ and a′bn − b′an are both non-zero and have the same sign (why
does such (a′, b′) exist?). Find a translate γ̃(a′,b′) + (c, d) of the geodesic
γ̃(a′,b′) that intersects γ̃(a∞,b∞) on a point of γ̃(a∞,b∞)|[0,t]. Conclude that
γ̃(a′,b′) + (c, d) intersects also γ̃(an,bn) on a point of γ̃(an,bn)|[0,2t]. Find a
contradiction using (v).

3Somehow, (a, b) is the average speed of γ̃(a,b) and (c, d) is the average speed of γ̃(c,d); but
this is of course no argument!

4Here we mean unit vector with respect to the metric g.
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(ix)∗ Find a proof of the same theorem that works also for the 3-dimensional
torus!

Exercise 5.2 Let M be a connected smooth manifold, p ∈ M and U a
neighbourhood of p.

(i) Prove that there exists a smooth map ϕ : M × M → M and a compact
neighbourhood K ⊂ U of p with the following properties:

• for all x ∈ M , ϕ(x,−) : M → M is a diffeomorphism fixing M \ U
pointwise;

• ϕ(x,−) is the identity of M for x ∈M \ U ;

• ϕ(x, p) = x for x ∈ K.

Let ΛM be one of the two following spaces (you are free to choose the one you
like most!):

• Λ(M) = C0(S1,M) is the space of all continuous maps from S1 to M ,
with compact-open topology;

• Λ(M) = W 1,2(S1,M) is the Hilbert manifold of all continuous maps from
S1 to M admitting a weak derivative of finite L2-norm5

There is a map e : ΛM → M sending a function γ : S1 → M to γ(1), where
1 ∈ S1 is the basepoint. Viceversa, there is a map c : M → ΛM sending p ∈M
to the constant function γp : S1 → p ∈M .

(ii) Prove that e is a locally trivial fibre bundle map, and c is a section of this
bundle. Prove that the fibre of e over p is homeomorphic to the loop space
ΩM .6

(iii)∗ Suppose that there is a deformation retraction of ΛM onto its subspace
c(M). Prove that ΩM is weakly contractible (all of its homotopy groups
vanish). Prove that then M must be also weakly contractible; how can we
conclude that M is in fact contractible?

(iv)∗ Prove that a closed connected manifold M of dimension n ≥ 1 is not
contractible (Hint: prove that there is a non-nullhomotopic map M → Sn;
don’t forget the non-orientable case!).

5The norm is only defined by patching local norms on charts, so it is not quite canonical;
but its being finite or infinite is a well-definied property of a continuous function S1 →M .

6Define this space, either using continuous functions or using H1 functions
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Topics in Geometry 2021—Exercises

Niels Martin Møller and Andrea Bianchi

October 14, 2021

Week 6 — deadline on October 26th

Exercise 6.1

(i) Look up the definition of smooth Hilbert manifold M : charts take values in
open subspaces of some Hilbert spaces, and transition functions of charts
must be smooth and invertible, with smooth inverse. What does it mean
for a map U → V of open sets of Hilbert spaces U ⊂ H1, V ⊂ H2 to
be smooth? What is a Taylor approximation in the context of Hilbert
spaces?

(ii) Define, for a point p in a Hilbert manifold M , the tangent space TpM : it is
a topological vector space, but it doesn’t have a canonical scalar product
upgrading it to a Hilbert space, unless M is endowed with an atlas whose
transition maps are isometries of open subspaces of Hilbert spaces. Show
that, given a chart ψ : U ⊂ M → H, for all p ∈ U we can identify TpM
with H as a topological vector space.

A Riemannian metric on a Hilbert manifold M is a choice of positive definite
scalar product gp on each tangent space TpM , upgrading TpM to a Hilbert
space, and such that two additional requirements holds. For a chart ψ : U → H
and for p ∈ U , we can compare the two scalar products on TpM , one being
gp, the other coming from the chart-induced identification Tp ∼= H. The two
additional requirements are the following, explain what they mean:

(iii) The assignment p 7→ gp is smooth.

(iv) For each chart, the two mentioned scalar products on TpM are equiva-
lent/commensurable.

From now on, let M be a Hilbert manifold with a fixed Riemannian metric, and
let f : M → R be a smooth function.

(v) For p ∈ M , define the continuous linear functional1 Dpf : TpM → R. Use
the Riemannian metric to define gradf ∈ TpM .

1This could be defined also before fixing a Riemannian metric on the Hilbert manifold!
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Now all terms in the Palais-Smale condition for f should have a precise meaning!
In the following we fix for simplicity a Hilbert manifold with a single chart
0 ∈ U ⊂ H, for some Hilbert space H. We also put a Riemannian metric
on U , i.e. a smooth family of scalar products gp on H ∼= TpU for p ∈ U .
Note again that gp is not assumed to coincide with the scalar product of H:
otherwise the following part of the exercise would be just the local study of a flat
Riemannian Hilbert manifold, and not a generic one! Assume that f : U → R
has an isolated minimum at 0, and for simplicity assume f(0) = 0 and f(p) > 0
for p 6= 0 ∈ U . Assume that f has the Palais-Smale condition. Fix δ > 0 such
that B̄H(0, 2δ) ⊂ U , where we consider here the closed ball of radius 2δ with
respect to the chart metric (the metric of H as a Hilbert space).

(vi) Let p1, p2, . . . be a sequence of points in B̄H(0, 2δ). Use commensurability
of g to prove that |Dpif |H → 0 iff |Dpi |g → 0.

(vii) Use smoothness of f (in fact, it suffices that f is of class C2) to prove the
following: there exists a 0 < ε < δ such that for all p, v ∈ H with |p|H = ε
and |v|H ≤ 1

2ε the following inequality holds:

|f(p+ v)− f(p)−Dpf(v)| ≤ |v|3/2H

(viii) Let S = ∂BH(0, ε), with ε as above.We want now to prove that inf{f(p)|p ∈
S} > 0, where it is clear that this inf is ≥ 0. Suppose by absurd that
there are points p1, p2, . . . in S with f(pi) → 0. Prove using (vii) that
|Dpif |H → 0. Use (vi) and the Palais-Smale condition on f to find a
subsequence pij with a limit (which clearly must lie in S). Find a contra-
diction.

Conclusion: the Palais-Smale condition allows us, as done in the lecture, to
find a small sphere S around an isolated minimum of f , such that inff(S) is
strictly bigger than the value attained at the isolated minimum. This is much
easier if we are working with a finite dimensional Hilbert manifold (i.e. a plain
manifold)!

Exercise 6.2

(i) Find a closed, orientable 3-manifold M with a Riemannian metric g, such
that there is an embedded, closed geodesic γ : S1 →M with the following
property: γ minimises the length among curves in its homotopy class, but
the closed curve γ′ obtained by running twice along γ is not a minimiser
of length in its homotopy class (although it is also a geodesic). Hint: what
property of π1(M) makes the exercise easy?

(ii) Prove that there is a Riemannian metric g on the 3-dimensional torus T =
S1×S1×S1 such that there is an embedded curve γ minimising the length
in the homotopy class of (1, 0, 0) ∈ π1T ∼= Z3 (use that π1 is abelian and
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represent free homotopy classes by elements of π1), but γ′ obtained by
running twice along γ is not a length minimiser in the homotopy class
(2, 0, 0), not even locally. Hint: embed a solid cylinder D2 × S1 in the
torus, use (i) to put a suitable metric on this solid cylinder, extend the
metric on the rest of the torus, and argue that the core γ of the solid
cylinder has the desired properties.

Exercise 6.3

(i) Let M be a Riemannian manifold, let p, q ∈ M , and let α : (−ε, ε) × [0, 1]
be a (smooth) variation of geodesics from p to q: each curve α(s,−) is a
geodesic with α(s, 0) = p and α(s, 1) = q. Prove that all geodesics α(s,−)
have the same length, for s ∈ (−ε, ε).

Consider now the sphere Sn, for n ≥ 2, with the standard round metric g, let
p, q be two antipodal points, and let γ : [0, 1] → Sn be an embedded geodesic
arc connecting p and q (half maximal circle).

(ii) Look up the definition of Jacobi field, in particular the differential equation
that a Jacobi field J along γ should satisfy, involving the Riemann tensor
R = Rg. Show that there exists a Jacobi field J along γ with J 6≡ 0, but
J(0) = 0 ∈ TpSn and J(1) = 0 ∈ TqSn.

(iii) Let η : Sn → R be a smooth function with the following properties: η ≡ 0
on γ, η > 0 away from γ, and all partial derivatives of all orders of η
vanish when evaluated at points of γ.2 Consider the Riemannian metric
g′ = (1+η)g on Sn. Prove that γ is the unique length-minimising geodesic
between p and q for g′.

(iv) Prove that J is a Jacobi field also for g′ (Hint: the Riemann tensor Rg′

can be computed in terms of g′ and its derivatives, and it suffices to prove
that Rg′ ≡ Rg along γ).

Conclusion: in the metric g′, there is no non-trivial variation of γ through
geodesics connecting p and q, althouogh γ admits non-trivial Jacobi fields van-
ishing at the endpoints.

Exercise 6.4
Regard S2 as the quotient of [0, 1]2 where we identify (0, t) ∼ (1, t) for all

t ∈ [0, 1), and we collapse 0× [0, 1] to a single point p, and we collapse 0× [0, 1]
to a single point q. You can think of p and q as being the north and south pole.

Let M be a closed Riemannian manifold, and let f : S2 → M be a non-
nullhomotopic continuous map; denote P = f(p) and Q = f(q). For each

2Use the old trick with e−1/x2
to produce such η.
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continuous map g : S2 →M with g homotopic to f consider the number Ẽ(g) =
sup0≤t≤1E(g(−, t)), where E is the energy functional on closed curves (attaining
value∞ on curves that are not of class H1), and g(−, t) is the restriction of g to
the parallel of S2 at latitude t. Prove that Ẽ(g) ≥ ε for some ε > 0 depending
only on the metric of M . The argument should be: if for all t the curve g(−, t)
has energy less than ε, then it is contained in a small, convex ball of M , then
g(−, t) nullhomotopes onto g(0, t) ∈M by convex interpolation, and these null-
homotopies are continuous in t, so that at the end g itself is null-homotopic.
Formalise this argument.

4



Topics in Geometry 2021—Exercises

Niels Martin Møller and Andrea Bianchi

October 29, 2021

Week 7 — deadline on November 4th

Exercise 7.1 (Fourier Series and Poincare inequality).

(i) Use Fourier series on the unit circle to suggest a new definition (no need to
link it to other definitions) of the Sobolev space

H1(S1,R) := {f ∈ L2 : f ′ ∈ L2}

via conditions on the Fourier coefficients of functions.

(ii) Use this Fourier series picture to show that H1-functions are continuous1.

(iii) Use Fourier series to show the Poincare inequality for f ∈ H1(S1,R):

‖f − f̄‖L2(S1,R) ≤ C‖f ′‖L2(S1,R),

where f̄ := 1
2π

∫
S1 f(s)ds denotes the average.

(iv) Give the sharp constant C in the Poincare inequality, and find all functions
which satisfy equality for the sharp constant.

Exercise 7.2 (Compact Rectangular Boxes in Hilbert Space).

(i) Let {ek}∞k=1 be an orthonormal system2 in an infinite-dimensional Hilbert
space H. Suppose that {dk}∞k=1 is a sequence of positive real numbers
satisfying

∞∑
k=1

|dk|2 <∞.

1In fact, of course, much more is true: they are C0,1/2, i.e. 1/2-Hölder.
2Without loss of generality, you can assume it is an orthonormal basis: why?
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Prove that the corresponding “infinite-dimensional rectangular box”

B :=

{ ∞∑
k=1

akek : ak ∈ R, |ak| ≤ dk

}
⊆ H

is a compact subset.

(ii) Use (i) and Fourier series on the circle to show that the inclusion

H1(S1,R) ↪→ L2(S1,R)

is a compact linear operator (the image of the closed unit ball is compact).

Exercise 7.3 (A counterexample by Weierstrass).
In 1856 Lejeune Dirichlet held a series of lectures about the Dirichlet princi-

ple; as his time it was common to assume that a non-negative functional defined
on a space in a natural way (usually in the context of a problem coming from
physics) admits an absolute minimum.

But in the work “Über das sogenannte Diritchlet’sche Princip”, presented in
1870, Karl Weierstrass suggested the following counterexample to the validity
of such arguments in general3:

E(u) :=

∫ 1

−1

∣∣∣∣xdudx
∣∣∣∣2 dx,

considered as a functional defined on

C := {u ∈ C1([−1, 1],R) : u(−1) = −1, u(1) = 1}.

We define κ := infu∈C E(u).

(i) Show that κ = 0. Hint: Dilations/rescalings of the function arctan(·) are
your best friends.

(ii) Show that there is no function in C which attains the infimum κ.

(iii) Exhibit a function u0 ∈ L∞([−1, 1]) which is continuous on some neighbor-
hoods of the endpoints, with u0(±1) = ±1, and such that the statement
E(u0) = κ = 0 is well-defined (and true) using weak derivatives. Discuss
the relation to your solution to (i).

3See https://michaelcweiss.files.wordpress.com/2020/04/weierstrass-example.pdf,
though it is written in German.

2


