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ANDREA BIANCHI

Here are some problems for the tutorial. We will try to cover as much as possible of them. Some
problems are exercises, some are more difficult, some are open questions (at least for me). This is how
life works...

1. Categories with spaces of objects

Recall that a (small) category C enriched in spaces (CGWH, or Kan complexes) is the datum of a set
of objects obj(C) plus, for each pair of objects x, y, the datum of a space C(x, y), plus an identity Ix ∈
C(x, x) for every object x, plus composition maps C(x, y) × C(y, z) → C(x, z), such that associativity
and unitality hold.

Infinity categories are essentially modeled on this notion: in particular if C is enriched in Kan com-
plexes, then the coherent nerve of C is an∞-category.

But what happens if we take a space of objects? Consider the following definition: C is given by a
couple of spacesO,M (of obects and of all morphisms in the category), plusmaps of spaces s, t : M → O
(every morphism is assigned its source and target), plus a map I : O → M (assigning to each object its
identity morphism), plus a composition map − ◦ − from the following pullback M ×O M toM .

M ×O M M

M O.

s

t

Is the previous a genuine pullback or a homotopy pullback? If we work ∞-categorically there is no
difference, but if we are old-fashoned and work with CGWH spaces or Kan complexes, then there is.
However if we assume (as we do henceforth) that the map (s, t) : M → O×O is a Serre/Kan fibration,
then the two notions agree up to weak equivalence.

(1) In the old-fashoned way of thinking, we would require strict associativity and strict unitality for
− ◦ − and I . In the∞-categorical way of thinking, what would be the natural analogue of the previous
definition? Suggestion; consider the ∞-category Idem from [HTT, Definition 4.4.5.2]; then an ∞-
category C whose objects form a space should be an inner fibration C → Idem such that the fibre over
the (unique) object of Idem is a Kan complex/anima/∞-groupoid. Check whether starting from a hard
category (O,M, I,− ◦ −) as above and taking coherent nerve (of the singular set) yields this notion or
something different.

(2) For C = (O,M, I,− ◦ −) as above, we say that two objects x, y are path-connected if they lie in
the same path-component of C; and they are equivalent if there are morphisms f : x→ y and g : y → x
such that

• g ◦ f is in the same path component of Ix inside the space M(x, x) (the fibre over (x, x) of the
map (s, t) : M → O ×O);

• f ◦ g is in the same path component of Iy inside the space M(y, y).
Prove that, under the hypothesis (s, t) : M → O×O is a Serre/Kan fibration, path-connected objects are
equivalent.

(3) For C = (O,M, I,− ◦ −) as above, we can define a simplicial space B•C by setting BpC =
M ×O M ×O · · · ×O M (again, fibre products are taken in CGWH or Kan complexes, but since (s, t)
is a fibration...). Its geometric realisation (as a CGWH1, or as a Kan complex) is called BC. Now from

1Maybe one should here assume that I : O → M is a cofibration of CGWH, or take the fat geometric realisation
1
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point (2) we could expect that if we take a full subcategory C0C with a discrete set of objects, say one for
each component of O, then the inclusion of C0 in C is fully faithful and hits up to equivalence all objects;
so we would guess that BC0 (which is the classical nerve of a category whose objects have no topology)
is weakly equivalent to BC. So the topology on objects, in a certain way, doesn’t count much. Prove it!

2. Grothendieck topologies on∞-categories of embeddings

Recall that for fixedn ≥ 1, we denotedMan the category of smooth, orientedn-dimensional manifolds
with empty boundary, and forM,N ∈ Man we denote byEmb(M,N) the space of morphisms fromM
to N in Man, i.e. the space (CGWH, and after taking singular set it is a Kan complex) of embeddings
ofM into N 2.

We passed from Man to its coherent nerve, thus regarding Man as an ∞-category. We considered
presheaves over Man and over its full subcategories Disck: for k ≥ 0 the category Disck is spanned by
objects diffeomorphic to

∐
h Rn for some 0 ≤ h ≤ k.

And for a presheaf F ∈ PMan we defined TkF ∈ PMan as the right Kan extension fromDisck toMan
of the restriction of F from Man to Disck. This worked smoothly in the context of∞-categories.

Now there is another classical characterisation of Tk : PMan → PMan due to Weiss. Consider again
Man as a category enriched over CGWH or over Kan complexes, with strictly associative composition.
Weiss considers for every k ≥ 0 (maybe it is better to think of k ≥ 1, though the definition makes sense
also for k = 0) a Grothendieck topology Ik on Man. The question of this exercise will be: can we give
this characterisation also in the language of∞-categories?

First, recall the definition of Grothendieck topology on an ordinary (non-enriched, strict) category
C. A sieve S on an object x ∈ C is a subpresheaf of the presheaf (in sets) represented by x: we have
S ⊆ C(−, x), i.e. S(y) ⊆ C(x, y) for all y ∈ C, and S is also a presheaf. A Grothendieck topology
on C is a family of sieves over objects of S, or equivalent, a determination of which sieves should be
considered as “covering” or “distinguished” or “admissible”, and which not. There are some axioms to
be satisfied, see [HTT,Definition 6.2.2.1] (the notion for∞-categories specialises to the classical one for
ordinary categories).

Classically there is a set-theoretic condition S(y) ⊆ C(y, x). If C(x, y) happens to be a space (CGWH,
or Kan complex), then one could ask a condition that takes the topology into account. In [HTT,Definition
6.2.2.1] this condition is that S(y) should be a union of path-components of C(x, y): after all, in an
infinity category C there is no sensible notion that discriminates homotopic morphisms from x to y!
Weiss definition of Ik however uses sieves with no evident extra topological condition.

So what is a covering sieve for the topology Ik? Let M ∈ Man; then a sieve S ⊆ Emb(−, N) is
covering for Ik if for every subset J ⊂ M of cardinality ≤ k there exists an object U ∈ M and an
S-admissible embedding f ∈ S(U) ⊆ Emb(U,M) such that the image of f contains J .3.

The result of this definition is astonishing: the functor Tk : PMan → PMan that we defined before using
the subcategory Disck, is indeed the4 sheafification with respect to the topology Ik. So the following
diagram commutes

PMan PDisck

ShvMan,Ik PMan.

Uk

sheafify
Tk

Ranιk

⊆

Yet it seems to me that a sieve for Weiss is not following Lurie’s definition. For example, take a
manifold M and let U1, . . . , Ur be open sets covering M in the most classical sense (every point of M
is contained in some Ui). Consider the set-theoretic sub-presheaf S ⊂ Emb(−,M) that associates with
any manifold U the set of embeddings U ↪→ M with image contained in some Ui. Then Weiss will say

2Actually we defined ManZ to have objects manifolds with an identification of the boundary with Z, and morphisms being
those embeddings which restrict to “the identity of Z” on the boundary. Here for simplicity we restrict to the case Z = ∅

3Actually Weiss defines the Grothendieck topology Ik in terms of coverings and not of covering sieves, but I think it is evident
that this is the reformulation

4the=a model of
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that S is a sieve, and S is even a covering sieve for I1; but Lurie will say that S is not a sieve at all,
because there exist in general isotopic embeddings f1, f2 : U ↪→ M with f1 landing in some Ui, but f2
having image contained in no Ui. For higher k the situation is similar: given a covering U1, . . . , Ur of
M which is redundant enough so that every subset J ⊂ M of cardinality ≤ k is in some Ui, define the
associated Weiss-sieve S by selecting for U ∈ Man the embeddings U ↪→ M with image in some Ui;
again S is not a Lurie-sieve.

Can we generalise the notion of∞-sieve in such a way that we are able to model Weiss’ construc-
tions and results?

Suggestion: we may try to define a sieve on an object x in an infinity category C just as a presheaf
S ∈ PC (presheaf means with values in spaces/animae/animated sets, not sets), plus a map of presheaves
S → C(−, x), that we think of as an inclusion (but it doesn’t have to be injective in any sense, and
probably it makes more sense to think of S(y)→ C(y, x) as being a Serre/Kan fibration). Can we adapt
[HTT, Definition 6.2.2.1] to define a sensible notion of∞-Grothendieck topology? Can we describe Ik
in this way?

Email address: anbi@math.ku.dk
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ANDREA BIANCHI

Here are some problems for the tutorial. We will try to cover as much as possible of them. Some
problems are exercises, some are more difficult, some are open questions (at least for me). This is how
life works...

1. Perverse sheaves over a space with two strata

Let us look again at Thais’ general example, and try to elaborate on it.
Let X be a topological space, written as union of a closed subspace Y and an open complement U .

As usual we denote i : Y → X and j : U → X the inclusions. We denote by S the stratification of
X by Y and U . Let K be a field1. We consider the bounded below derived category D−(X;K) of
bounded below complexes of sheaves of K-modules over X . For old-fashoned people, D−(X;K) is a
triangulated 1-category with a Postnikov t-structure, whose heart D−(A)♥ is equivalent to Sh(X;K),
the abelian category of sheaves ofK-modules overX . For∞-people,D−(X;A) is a stable∞-category,
it has a Postnikov t-structure as such and its heart is homotopy discrete and equivalent to (the nerve of)
the 1-category Sh(X;K).

Recall that for an objectF• ∈ D−(X;K) we have associated objectsHi(F•) in Sh(X;K). The func-
tor Hi : D

−(X;K) → D−(X;K)♥ ∼= Sh(X;K) is concretely described by taking the i-th homology
on each stalk of F•; on the other hand it coincides with the double truncation τ≤i ◦ τ≥i associated with
the Postnikov t-structure on D−(X;K).

Recall that we use homological notation: for example we have a distinguished triangle (aka fibre
sequence) inD−(X;A) of the form τ≥0F• → F• → τ≤−1F•. Similar remarks as above hold for Y and
U .

Consider the following categories of sheaves onX (and similarly on U and Y ), and derived categories
thereof.

• Sh(X;K), i.e. all sheaves;
• Shlc(X; C), i.e. locally constant sheaves on X; these are all sheaves F satisfying the following

property: for V1 ⊂ V2 ⊂ X small enough (with respect to some open cover ofX) and connected,
the restriction map F(V2)→ F(V1) is an isomorphism;

• Shc(X,S;K), i.e. S-constructible sheaves; a sheaf F here is required to satisfy that i∗F and
j∗F are locally constant with finitely generated stalks,2 on Y and U respectively.

• D−(X;K), i.e. the entire bounded below derived category;
• D−c (X;K), the constructible derived category; a complex of sheavesF• here satisfies thatHi(F•)

is constructible (but the Fi’s making the complex need not be constructible).
More precisely, D−c (X;K) is the full subcategory of the∞-category D−(X;K) spanned by the men-
tioned objects. In the following we focus on D−(X), but similarly we could work with D−c (X;K); we
make some remarks about it later.

Next, we used the recollement to produce a t-structure on Sh(X;K) starting from t-structures on
Sh(U ;K) and Sh(Y ;K).

Question 1.1. Prove (or disprove): the recollement of the Postnikov t-structures (Sh(Y ;K)≥0, Sh(Y ;K)≤0)
and (Sh(U ;K)≥0, Sh(U ;K)≤0) gives precisely the Postnikov t-structure (Sh(X;K)≥0, Sh(X;K)≤0).

1This is a simplifying assumption; a commutative noetherian ring of finite global dimension should work as well
2This assumption is responsible for Verdier duality onD−

b (X;K) to be a perfect duality
1
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Question 1.2. Prove (or disprove): the heart of the Postnikov t-structure (Sh(X;K)≥0, Sh(X;K)≤0)
is equivalent to Sh(X;K).

More generally, we considered any function p : {Y,U} → Z and considered on Sh(X; C) the p-
perverse t-structure (pSh(X;K)≥0,

pSh(X;K)≤0) whose decollement3 is given by the t-structures

(Sh(Y ;K)≥p(Y ), Sh(Y ;K)≤p(Y )) and (Sh(U ;K)≥p(U), Sh(U ;K)≤p(U)).

We defined perverse sheaves Perv(X, p;K) as the heart of the p-perverse t-structure. Let us assume for
simplicity that p(Y ) = 0 (we are free to translate all t-structures involved in a recollement by the same
integer).

Question 1.3. For which values of p(U) can we prove the following?
• The functor i∗ : D−(Y ;K) → D−(X;K) sends the full subcategory Sh(Y ;K) ⊂ D−(Y,K)
inside Perv(X, p;K);

• The abelian category Perv(X, p;K) splits as direct sum of two categories, one of which is
i∗Sh(Y ;K).

Observe that one can use recollement alsowith the categoriesD−c (X,S;K),D−lc(Y ;K) andDlc(U ;K);
note that D−lc(Y ;K) = D−c (Y, S|Y ;K) and similarly for U .

Reason for the last question: in the very, very special case X = C, Y = {0} and U = C∗, then the
following happens, according to the value of p(Y ) = 0 (I really hope to get indices correctly):

• for p(Y ) = 0 we have Perv(C, p;K) ' Sh−c (C, S;K), the latter being the usual abelian cate-
gory of constructible sheaves in K-vector spaces; S is the filtration on C by {0} and C∗;

• for p(Y ) = 2 we get precisely the Verdier duals of the complexes of sheaves in the previous
example, i.e. Verdier duals of constructible sheaves in K-vector spaces;

• for p(Y ) = 1 we get the middle perversity, and Verdier duality restricts to a self-duality

D : Perv(C, p;K)→ Perv(C, p;K);

• in all other cases Perv(C, p;K) splits as a direct sum of the subcategories spanned, respectively,
by skyscrapers on {0} and by those perverse sheaves of the form Im(j!F• → j∗F•).

See Geordie Williamson, “An illustrated guide to perverse sheaves” for further details (but pay attention,
he uses cohomological notation!).

2. Mixing t-structures and sheaves

Let C be a stable∞-category with a t-structure (C≥0, C≤0), and let X be a topological space.

Question 2.1. Is there a natural t-structure on the stable∞-category Sh(X; C) coming from the one on
C?

Using homological notation, one is tempted to define Sh(X; C)≥0 as the full subcategory on those
sheaves F taking values in C≥0, and then C≤0 would be automatically the full subcategory on those
sheaves F ′ such thatMapSh(F ,F ′) ' ∗ for all F ∈ Sh(X; C)≥0. Does it work?

If this work, one can hopefully stratify a spaceX , give a perversity function p on strata, and define per-
verse sheaves as the heart of Sh(X; C), endowed with the perverse t-structure coming from recollement
of the p-shifted t-structures on strata. Can this be good for anything?

Another, related question, is the following.

Question 2.2. Suppose the previous question has positive answer, at least under some additional as-
sumptions. Let X and Y be spaces. How do the t-structures on Sh(X × Y ; C) and Sh(X;Sh(Y ; C))
that we obtain interrelate with each other?

3Aka cassement
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3. Quiver representations

Recall that perverse sheaves have often a reinterpretation as much more down-on-to-earth abelian
categories of diagrams of vector spaces satisfying some constraints. The typical example is, once again,
given by Perv(C, p;K), where C is stratified by {0} and C∗, p is the middle perversity (i.e. p(0) = 0
and p(C∗) = 1), and K is a field.

Then the datum of a perverse sheaf is equivalent to a diagram of vector spaces Φ and Ψ interrelated
by maps u, v as follows

Φ Ψ,
v

u

with the additional condition that both 1 − uv and 1 − vu are invertible4. More precisely, the category
Perv(C, p;K) is equivalent to the category of diagrams as above and natural transformations.

Another incarnation of Perv(C, p;K), different from the (Φ,Ψ) description above, is the Dirac de-
scription: this time we consider the category of diagrams (and natural transformations) of the form

E− E0 E+
δ−

γ− γ+

δ+

with the additional condition that γ±δ± is invertible for all choices of signs, and is the identity whenever
it has same source and target.

See Mikhail Kapranov, Vadim Schechtman, “Perverse sheaves and graphs on surfaces” and “Shuffle
algebras and perverse sheaves” for more details, and for other incarnations.

Question 3.1. Assuming that we can make sense of perverse sheaves with values in our favourite ∞-
category, e.g. spectra; what alternative description as quiver representations do such perverse sheaves
have, if any?

Email address: anbi@math.ku.dk

4But by the formal identity (1− uv)−1 = 1 + u(1− vu)−1v it suffices one invertibility
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Here are some problems for the tutorial. We will try to cover as much as possible of them. Some
problems are exercises, some are more difficult, some are open questions (at least for me). This is how
life works...

1. Complex oriented cohomology theories

Let E be a spectrum, and let E∗ be the associated cohomology theory (for spaces, and for spectra as
well). In particular, for a space X we have isomorphisms of sets

Ei(X) = π0(Map(Σ∞+X,E[i])) = π0(map(X,E(i))).

Here E[i] is the shifted spectrum, E(i) is the i-th space of the spectrum E, X is a space, Map is
the mapping spectrum and map is the mapping space. For another spectrum F we have E∗(F ) =
π∗(Map(F,E)), since only the second formula is available.

A cohomology theory coming from an E∞ ring spectrum 1 E is called multiplicative; in this case
E∗(F ) is an (associative, unital) graded-commutative ring.

Example 1.1. Here are some examples of E∞ ring spectra:
• the sphere spectrum S = Σ∞+ S

0;
• the Eilenberg-MacLane spectrum HR, for all commutative ring R;
• the complex K-theory spectrumKU ;
• the complex cobordism spectrumMU .

Question 1.2. Prove or disprove: every graded-commutative ring R arises as E∗(∗) for some E∞ ring
spectrum E.

Question 1.3. Prove or disprove: every spectrum E with π0(E) 6= 0 can be endowed with a structure of
E∞ ring spectrum.

Recall: a multiplicative cohomology theory E∗ is complex orientable if the map E2(CP∞) →
E2(S2) coming from the inclusion S2 ∼= CP 1 ⊂ CP∞ is surjective. Some people will only ask that
this map hits the element η ∈ E2(S2) ∼= E0(∗) corresponding to the unit 1 ∈ E0(∗) of the ring E∗(∗):
check that forE being amultiplicative ring spectrum this is an equivalent requirement, using thatE2(S2)
is a rank 1 free module over E∗(∗). Of the examples above, HR, KU and MU are well-known to be
complex orientable.

Question 1.4. Prove that S is not complex orientable2.

Recall: a complex orientation on a multiplicative cohomology theory E∗ is an explicit choice of
θ ∈ E2(CP∞ hitting η. So a complex orientable cohomology theory E may admit several complex
orientations.

Question 1.5. Prove or disprove: HR admits exactly one complex orientation. In general, what prop-
erties should E satisfy, besides being complex orientable, so that E∗ admits exactly one complex orien-
tation?

1I guess all examples we are going to consider today are indeed E∞ ring spectra, but in principle one can consider also just
E1-ring spectra

2Oh, how easy would life be, if only S were complex orientable...
1
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Recall that the ring L = π∗(MU), also known as Lazard ring, has the following universal property:
it is a commutative ring with a canonical formal group law fL ∈ L[[x, y]], and every formal group law
f ∈ R[[x, y]] on every commutative ring R can be obtained by change-of-coefficients from θL along
exactly one ring homomorphism L → R. The fact that the ring L with the aforementioned universal
property is isomorphic to π∗(MU) is the content of Quillen’s theorem.

The ring L is abstractly isomorphic to Z[t1, t2, . . . ...], a polynomial ring in countably many variables:
this is the content of Lazard’s theorem. The description of L coming from the universal property is not
so easy: L is generated over Z by variables ci,j for i, j ≥ 0; the canonical formal group law fL has
the tautological form fL(x, y) =

∑
i,j≥0 ci,jx

iyj ; imposing that this is a formal group law yields many
polynomial relations that the generators ci,j must satisfy, and L is the quotient of the free polynomial
algebra Z[ci,j ]i,j≥0 by all these relations.

To specify ameaningful grading onL, let us definewhat a formal group law in the graded setting should
be. It should be a power series f(x, y) =

∑
i,j≥0 ri,jx

iyj ∈ R[[x, y]] satisfying the usual properties, and
we would like x, y and f(x, y) to be homogeneous of the same degree d ∈ Z. Moreover we want x and
y to commute without signs, so we’d like d to be even.

Question 1.6. Check that the requirement imposes that ri,j sits in degree−d(i+j−1), so all coefficients
have even degree as well.

The ring L is endowed with a canonical grading with ci,j sitting in degree 2(i + j − 1), becoming
a graded-commutative ring. So we choose d = −2; we could have chosen d = 2, 4, 0,−6 etc. as well;
but the choice d = −2 is the only one making Quillen’s isomorphism π∗(MU) ∼= L into a graded
isomorphism, so it is the only choice having a geometric meaning.

We saw thatMU has a similar, universal property as L: every complex orientation θ ∈ E2(CP∞) on
anE−∞ ring spectrumE corresponds to exactly onemap of ring spectraMU → E, yielding amorphism
MU2(CP∞)→ E2(CP∞) along which the canonical complex orientation θMU ∈MU2(CP∞) is sent
precisely to θ.

Question 1.7. Let E be a E∞ ring spectrum, and denote by R the graded-commutative ring π∗E =
E∗(∗). Which of the following sets are in canonical bijection with each other?

(1) Formal group laws f(x, y) on R, with x, y, f(x, y) homogeneous of degree −2.
(2) Graded ring homomorphisms L→ R.
(3) Complex orientations θ ∈ E2(CP∞.
(4) (Homotopy classes of) ring spectra mapsMU → E.

2. Formal group laws, purely algebraically

Here are some examples of formal group laws:
• x + y ∈ Z[[x, y]]; this is the fgl associated with the complex oriented cohomology theory HZ.

More generally x + y ∈ R[[x, y]] is associated with HR, where R is a commutative ring (con-
centrated in degree 0);

• x + y + βxy ∈ R[[x, y]], for R = Z[β±1] being a Laurent ring in one variable β of degree 2;
this comes fromKU .

•
∑

i,j≥0 ci,jx
iyj ∈ L[[x, y]], the universal example, corresponding toMU .

In the non graded setting, for all commutative ring R we have the formal group laws x+ y, x+ y+ βxy
with β ∈ R∗, and the generic example has just some “infinite” form

∑
i,j≥0 ri,jx

iyj . In the rest of the
section, let us consider non-graded commutative rings and formal group laws on them.

Question 2.1. Let R be a commutative ring (without grading), and assume that R has no nilpotent
elements. What are the formal group laws onR of “polynomial type”, i.e. of the form f(x, y) ∈ R[x, y] ⊂
R[[x, y]]?

Recall that two formal group laws f(x, y), f ′(x, y) ∈ R[[x, y]] are isomorphic if there is a power
series b(t) ∈ R[[t]] of the form b(t) = b0t + b1t

2 + b2t
3 + . . . such that b0 ∈ R∗ and such that
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f(b(x), b(y)) = b(f ′(x, y)). If b(t) can be chosen with b0 = 1, then f and f ′ are said to be strictly
isomorphic.

Question 2.2. Prove or disprove: for β, β′ ∈ R∗ the fgls x+ y+βxy and x+ y+β′xy are isomorphic,
by constructing an explicit b(t) as above, or by finding an obstruction. In the answer was positive, are
x+ y + βxy and x+ y + β′xy also strictly isomorphic?

Question 2.3. Prove that, forR = Q, the fgls x+y and x+y+xy are strictly isomorphic, by constructing
an explicit b(t) as above.

In fact, all formal group laws over Q are uniquely, strictly isomorphic to each other (see Lurie’s notes
on chromatic homotopy theory, this follows essentially from Lemma 10 in Lecture 2).

Instead, over Fp there are non-isomorphic fgls; for example x+y, which has height∞, and x+y+xy,
which has height 1.

Question 2.4. Fix a prime p and an integer n ≥ 0. Is there a formal group law over Fp of height exactly
n?

For this last question, look here:
https://mathoverflow.net/questions/124048/what-do-formal-group-laws-of-height-geq-3-look-like

3. Germs of bundles of Lie groups

Let G be a complex Lie group (e.g. (C,+), or (C∗, ·), or GL(n) or O(n)), and denote by e ∈ G the
neutral element. Let n denote the dimension (over C) of G, and let z1, . . . , zn be the coordinates of a
local chart φ : U → Cn defined on a small neighbourhood of e, such that φ(e) = 0. If you wish, just
focus on the case n = 1.

There is a smaller neighbourhood V ⊂ U of e such that the multiplication µ : G × G → G restricts
to a map V × V → U , and can thus be read in coordinates.

Question 3.1. How does µ look like in coordinates? Focus first on the case n = 1, and recall that a
1-dimensional Lie group is always commutative.

Now suppose that ψ : U → Cn is another chart centred at e, with coordinates w1, . . . , wn. Then the
coordinate change allows us to pass from the description of µ : V ×V using the chart φ, to the description
of the same map using the chart ψ.

Question 3.2. How does the coordinate change look like?

Suppose on the contrary that we have just one chart ψ, but we have a self-map b : G → G of Lie
groups. We don’t assume that b is an automorphism of groups, just an endomorphism.3.

Question 3.3. How does b look like in coordinates?

Note: in characteristic p, an endomorphism of a formal group law may be much more complicated!
For example b(t) = tp is an endomorphism of the formal group law x+ y.

Suppose now that we have a complex variety X and a family4 of groups π : E → X , i.e. E is also
a complex variety, π is holomorphic, each fibre of π is a complex Lie group and all relevant maps are
holomorphic, namely the multiplication map µ : E×X E → E and the neutral element section e : X → E .

Question 3.4. Prove or disprove: the inverse map (−)−1 : E → E is then automatically holomorphic.

We are actually going to study the behaviour of E near the e-section e(X) ⊂ E ; so it suffices that E
looks like a bundle of groups near the e-section; think of any neighbourhood of e(X) ⊂ E as being the
total space of a bundle of germs of Lie groups over X . The following should be the example to keep in
mind.

3Actually it suffices, for our purposes, to assume that b : V → V is defined only on a neighbourhood V of e ∈ G, and that it
commutes with multiplication on a subneighbourhood, where every meaningful formula is defined

4If you want, think of a bundle; probably we want to consider bundles with exceptional fibres, or something of this kind
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Example 3.5. LetX = C and let E = C×C \ {(β,w)|βw = −1}. The projection π : E → X is given
by (β,w) 7→ β. The e-section is given by e(β) = (β, 0), and the fibrewise multiplication is given by

µ((β, x), (β, y)) = x+ y + βxy.

Question 3.6. Prove or disprove: the above data define a family of Lie groups over X = C, all fibres
being commutative complex Lie groups of dimension 1.

Note that π−1(0) is isomorphic to C, but π−1(β) is isomorphic to C∗.
Let A ⊂ X be an open set on which E is “trivial near the e-section”5. By this we mean that there is a

Lie group G with unit eG and a neighbourhood U of eG, such that a neighbourhood of e(A) in E can be
identifiedwithA×U , in such a way that e : A→ E corresponds to the obvious section (−, eG) : A→ A×
U , and that the multiplication µ agrees fibrewise with the multiplication ofG, at least when restricted, for
a smaller neighbourhood V ⊂ U ⊂ G of eG, to the subspace (A×V )×A(A×V ) of (A×U)×A(A×U).

Question 3.7. How does the multiplication µ : (A×V )×A (A×V )→ A×U read in local coordinates?
Express it in terms of the ring O(A) of holomorphic functions defined on A.

A germ of gauge transformation along A is then a selfmap b : A × V which fixes the e-section e(A)
and is compatible with the multiplication µ near e(V ) ⊂ A× V

Question 3.8. How does b look like in coordinates? Express it in terms of the ring O(A).

Again, in characteristic p the situation is more complicated than just multiplying by an invertible
element of O(A).

The last question is the following.

Question 3.9. Is there a meaningful way to connect the following two facts about the formal group law
x+ y + βxy over the ring Z[β]?

• If we basechange from Z to C we get a family of groups as in the example above, and exactly one
of them, namely for β = 0, is globally additive (isomorphic to C), but generically (for β 6= 0) we
obtain a group which is globally multiplicative (isomorphic to C∗)

• If we basechange from Z to Fp we get a family of formal group laws as well; exactly one of them,
namely for β = 0, has height∞, but generically (for β 6= 0) we obtain a formal group law of
height 1.

Email address: anbi@math.ku.dk

5The letter A is not chosen randomly: it is the first letter of “affine”, so A should be thought as an affine subscheme of X , if
you are more familiar with schemes than with complex manifolds
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