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Abstract. These are the lecture notes for the course “Commutative Alge-

bra” held at the University of Copenhagen between February and April 2023
(blok 3). We refer by [Bos] to the book “S.Bosch, Algebraic Geometry and
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these notes are taken from this source. If you spot any mistakes, I would be
glad to correct them; so please let me know!

Contents

1. Rings and ring homomorphisms 3
1.1. Definition of rings and first examples 3
1.2. Aside: structure versus properties 5
1.3. Ring homomorphisms and categories 6
1.4. Algebras over a ring and rings of polynomials 8
1.5. Functions induced from polynomials 10
2. Ideals and modules 11
2.1. Definition of ideals 11
2.2. Modules 13
2.3. Back to ideals 16
3. Various types of ideals 19
3.1. Prime ideals and the spectrum of a ring 19
3.2. Maximal ideals 20
3.3. Radical ideals 22
4. Localization of rings 24
4.1. Definition of localization and first examples 24
4.2. Localization at a prime and local rings 25
4.3. Properties of the localization map 27
5. Ideals of localizations and spectra of rings 28
5.1. Extension and contraction 29
5.2. More on spectra of rings 30
5.3. Elements of the ring as functions on the spectrum 33
6. Localization of modules 35
6.1. Definition of localization of modules and first examples 35
6.2. Functoriality and exactness 36
6.3. Detecting properties after localization 37
7. Noetherian rings and modules 39
7.1. Definition of Noetherian modules and rings 39
7.2. The Hilbert basis theorem for rings 43

Date: March 22, 2023.
1



2 ANDREA BIANCHI

7.3. The Hilbert basis theorem for modules 44
7.4. A glimpse on Artinian rings and modules 45
8. Primary decomposition 47
8.1. Irreducible ideals 47
8.2. Primary ideals 50
8.3. Primary decompositions 51
8.4. Geometric interpretation 54
8.5. Two funny exercises 55
9. Artinian rings 56
9.1. Krull dimension 56
9.2. Proof of Theorem 9.1 57
9.3. Local Artinian rings 59
10. Tensor products of modules and algebras 60
10.1. Bilinear maps 60
10.2. Definition of tensor products by construction 61
10.3. Definition of tensor product by universal property 62
10.4. Examples and properties of tensor products 64
10.5. Extension of scalars 66
10.6. Tensor products of algebras 67
11. Flatness 68
11.1. Additive and exact functors 68
11.2. Flatness 71
11.3. Faithful flatness 72
12. Flatness and localisations 74
12.1. Tensor product “commutes” with localisation 74
12.2. Characterisation of faithfully flat ring homomorphisms 75
12.3. Detecting flatness 76
13. Integral dependence 78
13.1. Definition of integral (and algebraic) dependence 78
13.2. Finite, finite type and integral algebras 79
13.3. Two manipulations of polynomials 81
13.4. Characterisation of integral elements 83
13.5. Integral closure along a ring homomorphism 84
13.6. Integral closure and localisation 86
14. The “Going up” theorem and Nakayama lemma 87
14.1. The “Lying over” theorem 87
14.2. The “Going up” theorem 88
14.3. Nakayama lemma 89
14.4. A glimpse on the “Going down” theorem 91
15. Nullstellensatz 91
15.1. Noether normalisation lemma 92
15.2. Maximal ideals and residue fields in finitely generated algebras 94
15.3. Radical ideals and zero loci 95
16. Artin-Rees lemma and Krull intersection theorem 95
16.1. Ther Artin-Rees lemma 96
16.2. Proof of Krull intersection theorem and an application 98
17. Krull dimension theorem 99
17.1. Height and coheight 100



COMALG 2023 3

17.2. Proof of Krull dimension theorem 100
17.3. The counterexample of Nagata 102
18. Applications of Krull dimension theorem 104
18.1. Bound on dimension of local rings 104
18.2. Krull principal ideal theorem 105
18.3. Parameters in a local ring 105
18.4. Dimension of polynomial rings 107
18.5. Regular local rings are domains 109

1. Rings and ring homomorphisms

Since childhood, we have learnt how useful numbers can be in life. The reason for
this is that, besides representing “quantities” from the real world, numbers can be
combined and manipulated through “operations”, allowing “computations” which
in turn allow us to make predictions about the reality around us. Two of the most
useful operations are the binary operations of “sum” and of “product”; the notion
of “ring” arises by abstracting the idea of a set with two such operations, without
requiring anymore that the elements of this set correspond to “quantities” in any
way.

1.1. Definition of rings and first examples.

Definition 1.1. A ring R is a set endowed with the following structure:

• two binary operations, i.e. functions R × R → R, denoted +: R × R → R
and called sum and · : R × R → R and called product, and sending a pair
(a, b) ∈ R×R to an element of R that is denoted a+b ∈ R and, respectively,
a · b ∈ R;
• a special element, denoted 1 ∈ R and called the multiplicative neutral ele-

ment,

satisfying the following properties:

• (R,+) is an abelian group, i.e. the following hold:
Associativity: for all a, b, c ∈ R we have a+ (b+ c) = (a+ b) + c;
Commutativity: for all a, b ∈ R we have a+ b = b+ a;
Existence of 0: there exists a (unique) element of R, denoted from now

on 0 ∈ R, such that for all a ∈ R we have a+ 0 = 0 + a = a;
Existence of additive inverses: for all a ∈ R there is a (unique) element

of R, denoted −a ∈ R, such that a+ (−a) = (−a) + a = 0;
• (R, ·, 1) is an associative monoid, i.e. the following hold:

Associativity: for all a, b, c ∈ R we have a · (b · c) = (a · b) · c;
1 is neutral: for all a ∈ R we have a · 1 = 1 · a = a;
• the product is distributive with respect to the sum, i.e. for all a, b, c ∈ R

we have (a+ b) · c = (a · c) + (b · c) and c · (a+ b) = (c · a) + (c · b).
A ring R is called commutative if moreover the following property holds:

Commutativity of product: for all a, b ∈ R we have a · b = b · a.

We usually denote a ring as a tuple (R,+, ·, 1), or whenever there is no reasonable
doubt about what additional structure is meant, just as the underlying set R. When
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dealing with several rings at the same time we might stress the structure of a ring
R by writing +R, ·R and 1R.
In Definition 1.1 we use parentheses () just to make clear, as usual, in which order
the operations have to be made. The study of commutative rings, i.e. those in
which not only the sum, but also the product is commutative, is simpler, and this
will be the focus in the entire course; for this reason, we will from now on always
assume that our rings are commutative, and just use the word “ring” to
mean “commutative ring”; but be careful when you read the literature, because
“ring” is often used with the meaning of Definition 1.1.

Example 1.2. The set of natural numbers N = {0, 1, 2, 3, . . . } is endowed with an
element 1 ∈ N and the two usual operations of sum and product; however the sum
doesn’t make N into an abelian group, since for every a 6= 0 there is no additive
inverse “−a” in N. It follows that the set N, with the given structure, is not an
example of a ring.
Humanity has solved this problem by introducing Z, the integers; Z is, with the
element 1 ∈ Z and the usual sum and product operations, an example of a ring.
Other familiar examples are Q,R,C, again with usual 1 and operations: these rings
satisfy an extra property, for which they are called fields, as in Definition 1.3.

Definition 1.3. A ring R is a field if it satisfies the following properties:

• 0 6= 1 (if you are confused about this, see Example 1.10);
• for all a ∈ R with a 6= 0 there exists a (unique) element of R, denoted a−1,

such that a · a−1 = a−1 · a = 1.

Example 1.4. For any natural number n ≥ 1 we can consider the equivalence
relation ≡n on the set Z, where for a, b ∈ Z we say a ≡n b if the difference a − b
is a multiple of n. The set of equivalence classes is usually denoted Z/n, and we
denote by [a]n the equivalence class of an integer a ∈ Z.
The set Z/n “inherits” from Z a ring structure: one defines the element 1Z/n ∈ Z/n
as the class [1Z]n, and for a, b ∈ Z one sets [a]n+[b]n = [a+b]n and [a]n ·[b]n = [a·b]n;
these definitions are well-posed, and make Z/n into a ring.
Now, if we think of Z as a discrete “line”, infinite in both directions, we can think
of Z/n as obtained from Z by wrapping it along a circle of “length” n; the result is,
pictorially, a circle with n points in evidence, representing the n equivalence classes
in Z/n. This picture now looks like a ring (the piece of jewelry) with n precious
stones...1

Exercise 1.5. Check or recall from previous courses that ≡n is indeed an equiva-
lence relation, that the given definitions of sum and product on Z/n are well-posed,
and that with this structure Z/n is indeed a ring, i.e. it satisfies all properties from
Definition 1.1.

Exercise 1.6. Check or recall that Z/n is a field if and only if n is a prime number.

Example 1.7. Given two rings R and S, we can consider the cartesian product of
sets R × S; we can put a ring structure on it, by letting the pair (1R, 1S) be the
multiplicative neutral element, and by letting the operations of sum and product
be defined componentwise.

1I thought for a long time that this is the historical reason why the word “ring” is used for
the mathematical object from Definition 1.1; then I had a quick read on Wikipedia and found out

that things are a bit more complicated...
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More generally, given a set X and a family of rings (Rx)x∈X , we can consider the
product

∏
x∈X Rx, containing families (ax)x∈X of elements, one for each ring; we

can again put a ring structure by letting the family (1Rx
)x∈X be the multiplicative

neutral element, and by defining operations pointwise. A particular case is when
all rings Rx are the same ring R: then

∏
x∈X Rx is the set RX of all functions of

sets X → R, and we are endowing this set of functions with a ring structure which
is defined pointwise.

1.2. Aside: structure versus properties. It is very important when one gives a
definition of a mathematical notion, to distinguish between structure and properties.
With reference to Definition 1.1, we have denoted the binary operations +, · and
the element 1 as structure that we put on the set: this is to suggest that, once a
set R is given, there are possibly several different choices for the operations and for
the special element 1, leading to very different rings, yet with same underlying set.
Instead, we have denoted the associativity of +, ·, the neutrality of 1 with respect
to ·, the distributive law, etc., as properties: this is to suggest that, once a potential
choice of structure is made, either the requirements hold, or not (and in the latter
case the choice of structure was bad and we have to change it), but there are not
“multiple ways” in which, for instance, associativity of a given sum operations can
hold true.
We remark that the element 0 ∈ R, i.e. the neutral element of sum, is included
among the properties: this is because either there exists such an element, or not, but
there cannot be, say, two distinct elements 0, 0′ ∈ R, both satisfying the property
of being neutral for +: for one would then run into contradiction when computing
0 + 0′, which would have to be equal to both 0 and 0′. This also explains why we
put the word “unique” in parentheses in the definition: even without this word, the
element would be anyway unique if it exists. Similarly for the existence of additive
inverses (so we didn’t need to give a map − : R→ R sending a 7→ −a as a structure,
since this map is uniquely determined by its required properties). And similarly
for Definition 1.3, where the word “unique” is in parentheses.

Exercise 1.8. Prove that what claimed in the last paragraph holds: that is, the
versions of Definitions 1.1 and 1.3 without the occurrences of “(unique)” are equiva-
lent to the versions with the word “(unique)”. In this, recall the associative property
of both + and ·.

The distinction between structure and properties is also emphasized in the notation
(R,+, ·, 1), by which one formally introduces a ring: one has to declare the structure
on the set R, but nothing about the properties.
One could now argue: why did we treat 0 and 1 differently, by requiring the first
as property and the second as structure? After all, one can easily prove that, if the
binary operation · has a neutral element, this is also unique (this is similar as the
argument above with 0 and 0′). The reason for this asymmetry will become clear
when we discuss ring homomorphisms, see Definition 1.13. For the moment, we
content ourselves of the fact that the situation with (+, 0) and with (·, 1) is not
precisely the same: indeed (R,+, 0) is required to be an abelian group, whereas
(R, ·, 1) is only required to be a monoid.

Exercise 1.9. Prove that for a ring R and for a ∈ R, we always have a·0 = 0·a = 0.
In particular we can almost never expect that the element 0 has a multiplicative
inverse 0−1, such that 0 · 0−1 = 0−1 · 0 = 1; more precisely, the only way this can
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happen is the situation of Example 1.10. In particular, in a ring R the monoid
(R, ·, 1) is almost never a group, and hence the asymmetry between (R,+, 0) and
(R, ·, 1) is essential to make Definition 1.1 interesting.

Example 1.10. Pay attention to the fact that Definition 1.1 does not impose the
inequality 0 6= 1. However, if R is a ring with 0 = 1, then for all a ∈ R we have
a = a · 1 = a · 0 = 0 (the last equality usese Exercise 1.9): this means that 0 is the
only element of the set R. The ring {0 = 1} of one element, known also as “zero
ring”, is a very boring ring, yet it is convenient to consider it as a ring: this is
similar to the convenience of considering 0 as a natural number, or ∅ as a set.

Exercise 1.11. For a ring R, prove that if a ∈ R and if −1 and −a are the additive
inverses of 1 and a, respectively, then we have (−1) · a = −a.

Exercise 1.12. Prove that there are abelian groups (A,+) such that there is no
choice of 1 ∈ A and · : A×A→ A which upgrades A to a ring. In other words, not
every abelian group is the underlying group of some ring (Hint: take the quotient
of abelian groups Q/Z).
Prove also that there are abelian groups (A,+) admitting more than one ring
structure. (Hint: find ring structures on the abelian group Z/n in which the mul-
tiplicative neutral element is any additive generator of Z/n)

1.3. Ring homomorphisms and categories. One of the leading principles in
modern mathematics, which has become the standard in the last century, is that
whenever one introduces a class of mathematical objects, one should also try to
define morphisms/maps between two objects in the class. For the notion of ring we
have the following convenient definition.

Definition 1.13. Let (R,+R, ·R, 1R) and (S,+S , ·S , 1S) be two rings. A ring ho-
momorphism from R to S is a map of sets f : R → S which “preserves the ring
structure”, more precisely it satisfies the following properties:

• for all a, b ∈ R we have f(a) +S f(b) = f(a+R b);
• f(1R) = 1S ;
• for all a, b ∈ R we have f(a) ·S f(b) = f(a ·R b).

You will appreciate how the spirit of Definition 1.13 is: “there are many possible
maps of sets R → S, but only some of them, namely those that preserve the
ring structure, are considered ring homomorphisms”. In particular, morphisms are
defined as maps of sets with some properties, but no additional structure on top of
a map of sets is specified.
Notice also that one of the requirements is f(1R) = 1S ; the main reason why in
Definition 1.1 we put 1 among the structure and 0 among the properties, is that
later, in Definition 1.13, we want to remember to put among the properties the
equality f(1R) = 1S , as this property is not in general automatic.

Exercise 1.14. Prove that if f : R→ S is a ring homomorphism, then f(0R) = 0S :
for this check that the element x = f(0R) ∈ S satisfies the equality x+ x = x, and
by summing −x on both sides one readily gets x = 0S .

Exercise 1.15. Find an example of two rings R,S and a map of sets f : R → S
such that f(a) +S f(b) = f(a +R b) and f(a) ·S f(b) = f(a ·R b) for all a, b, yet
f(1R) 6= 1S . (Hint: take S = Z/6 and try to arrange that f(1R) = [4]6)
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We make the following observations about Definition 1.13:

• given a ring R, the identity map IdR : R→ R of the set R is a ring homo-
morphism;
• given three rings R,S, T and given two ring homomorphisms f : R → S

and g : S → T , the composition of maps of sets g ◦ f : R → T satisfies all
requirements of 1.13, i.e. it is again a ring homomorphism.

The above discussion shows that rings and ring homomorphisms form a category,
in the following sense.

Definition 1.16. A category C is a choice of the following data:

• a collection Obj(C), whose elements are called objects: here we use the
generic word “collection” to emphasize that C may not be given by a set
(it could be “larger” than any set);
• for all x, y ∈ C, a set HomC(x, y) of morphisms from x to y;
• for all x ∈ C, a special element 1x ∈ HomC(x, y), called the identity of x;
• for all x, y, z ∈ C, a map of sets ◦x,y,z : HomC(y, z)×HomC(x, y)→ HomC(x, z)

sending a pair (g, f) to an element denoted g ◦ f ∈ HomC(x, z), and called
composition of morphisms,

such that the following properties hold:

Associativity of composition: for all x, y, z, w ∈ Obj(C) and all f ∈ HomC(x, y), g ∈
HomC(y, z), h ∈ HomC(z, w) we have (h ◦ g) ◦ f = h ◦ (g ◦ f);

Neutrality of identities: for all x, y ∈ Obj(C) and all f ∈ HomC(x, y) we have
f ◦ 1x = 1y ◦ f = f .

One usually denotes by C also the collection Obj(C), and so writes x ∈ C to mean
“x is an object of C”. Similarly, one writes f : x→ y to mean “f is a morphism (in
C) from x to y”, which is the same as saying f ∈ HomC(x, y).
Definition 1.16 captures exactly what happens with rings and rings homomor-
phisms: there is a category, that we will denote by Ring, whose objects are rings2

R = (R,+, ·, 1) and whose set of morphisms HomC(R,S) is the set of all ring ho-
momorphisms R → S; the identity map IdR serves as categorical identity 1R, and
composition of morphisms is defined using the usual composition of maps of sets.

Example 1.17. Let R = (R,+R, ·R, 1R) be a ring, and let f : Z → R be a ring
homomorphism. Then we must have 0 7→ 0R and 1 7→ 1R; moreover any positive
integer n ≥ 1 ∈ Z can be written as a finite sum 1 + · · · + 1, which by f must be
sent to the element 1R+R · · ·+R 1R, where in the last sum there are n summands;3

similarly, every negative integer −n must be sent to the additive inverse of f(n).
It follows that the entire map f is uniquely determined by the requirement that it
be a ring homomorphism. Viceversa, one can use the above to define recursively a
map of sets Z→ R, and then check that it is always a ring homomorphism.
Conclusion: the ring Z has the characterising property that for any ring R there is
exactly one ring homomorphism Z → R. In categorical terminology, if an object
i of a category C has the property that for any object x ∈ C there is exactly one
morphism i→ x, one says that i is initial. We just proved that Z is initial in Ring.

2In this course, we only consider commutative rings; hence also all objects of the category

denoted Ring will be commutative rings
3Here there is a simple induction argument hidden: spell it out!
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Exercise 1.18. Dually, an object t in a category C is said to be terminal if for any
object x ∈ C there is exactly one morphism x→ t. Guess which ring is terminal in
Ring, and then prove it!

1.4. Algebras over a ring and rings of polynomials.

Definition 1.19. Given a ring S, we say that a subset R ⊂ S is a subring if 1 ∈ R,
R is an additive subgroup of S, and the product restricts on R; in this case the
inclusion R ↪→ S is a ring homomorphism.

Exercise 1.20. Prove that the image of a ring homomorphism towards a ring S
is a subring of S; converesely, notice that every subring R ⊆ S can be exhibited as
the image of the ring homomorphism R→ S given by the inclusion.

Often one is more confident about a subring ring R and is trying to understand
properties of the larger ring S, so that one thinks of R as “the easy part” of S. More
generally, one may have a (possibly non-injective) ring homomorphism φ : R → S,
and still want to consider S as the “easy” ring among the two.

Definition 1.21. Let R be a ring. An R-algebra is the datum (S, φ) of a ring S
and a ring homomorphism φ : R → S. Given two R-algebras (S, φ) and (S′, φ′), a
ring homomorphism f : S → S′ is said to be a R-algebra homomorphism if there is
an equality φ′ = f ◦ φ of ring homomorphisms R→ S′.

To justify the spirit of Definition 1.21: we can think of an R-algebra as a ring S
with an additional structure, namely a choice of ring homomorphism from R; it
is then natural to define R-algebra homomorphisms as those ring homomorphisms
that “preserve” this additional structure, and this “preservation” is interpreted as
commutativity of the following diagram (which is the equality φ′ = f ◦ φ):

R S

S′

φ

φ′
f

For every ring R the above yields a category RAlg of R-algebras and homomor-
phisms of R-algebras.

Exercise 1.22. Describe in detail the category RAlg of R-algebras and homomor-
phisms of R-algebras. Show that the object (R, IdR) is initial in this category. Find
also a terminal object.

Example 1.23. Every ring is uniquely a Z-algebra, by rephrasing Example 1.17;
similarly, every ring homomorphism f : R→ S is automatically a Z-algebra homo-
morphism.
The inclusion of Q ↪→ R makes R into a Q-algebra. For all m,n ≥ 1 and m | n,
the natural projection Z/n � Z/m is a ring homomorphism, making Z/m into a
Z/n-algebra.
Observe that for n ≥ 2 there can be no ring homomorphism Z/n→ Q nor Q→ Z/n,
because in both rings we have 1 6= 0, yet any ring homomorphism between these
two rings would be in particular an abelian group homomorphism and as such (easy
check) would have to send everything to zero. So Q cannot be made into a Z/n-
algebra, nor viceversa. This shows that knowing that a ring S admits an R-algebra
structure can put strong constraints on the ring S itself.
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Exercise 1.24. Find two rings R,S such that S admits two different structures of
R-algebras.

Example 1.25. Given a ring R, a polynomial in the variable x with coefficients in
R is a formal sum

∑∞
α=0 cαx

α, where (cα)α≥0 is a sequence of elements of R, called
coefficients, with all but finitely many terms being 0. The set of all polynomials
is denoted R[x], and it becomes a ring by defining (

∑∞
α=0 cαx

α) + (
∑∞
α=0 c

′
αx

α) =∑∞
α=0(cα + c′α)xα and (

∑∞
α=0 cαx

α) · (
∑∞
α=0 c

′
αx

α) =
∑∞
α=0(

∑α
i=0 ci · c′α−i)xα, and

by letting the constant polynomial 1 be the multiplicative neutral element. The
inclusion of R into R[x] as constant polynomials is a ring homomorphism, making
R[x] into an R-algebra. We will generalise this to several variables in Definition
1.27.

Definition 1.26. Given a set I, we denote by Mult(I) the set of all functions
α : I → N that vanish “almost everywhere”, in the set that I \ α−1(0) is a finite
subset of I. Note that given two such functions α, β ∈ Mult(I), the pointwise sum
α + β is again a function I → N that lies in Mult(I). An element of Mult(I) is
called a multi-index labelled by the set I.

Definition 1.27. Let R be a ring. Given a set I, we can create a “variable” xi for
all elements i ∈ I. With any multi-index α ∈ Mult(I) we associate the correspond-

ing monomial xα, which we think of as the formal, finite product
∏
i∈I x

α(i)
i . Given

a function c : Mult(I) → R that vanishes “almost everywhere”, again in the sense
that Mult(I) \ c−1(0) is a finite set, we define the corresponding polynomial in the
variables {xi}i∈I and coefficients in R as the formal, finite sum

∑
α∈Mult(I) cαx

α.

The element cα := c(α) is called the coefficient of the monomial xα.
We let R[xi | i ∈ I] denote the set of all polynomials in the variables {xi}i∈I and
coefficients in R. The sum of polynomials

∑
α cαx

α and
∑
α c
′
αx

α is defined as the
polynomial

∑
α(cα+c′α)xα, i.e. the polynomial corresponding to the pointwise sum

of the functions c and c′. The product of the same polynomials is defined as the
polynomial corresponding to the function d : Mult(I)→ N sending

α 7→ d(α) = dα =
∑

(β,β′)∈Mult(I)2 : β+β′=α

cβ · c′β′

(check that in the latter sum almost all terms are zero).
We define a map ι : R→ R[xi | i ∈ I] by sending the element a ∈ R to the “constant
polynomial” a, corresponding to the function Mult(I)→ R sending the zero multi-
index to a, and every other multi-index to 0 ∈ R; this provides us in particular
with an element 1R[xi | i∈I] := ι(1R) ∈ R[xi | i ∈ I].

Exercise 1.28. Prove that the set R[xi | i ∈ I] from Definition 1.27, together with
the operations of sum, product and the element 1R[xi | i∈I], is a ring. Prove also
that ι is a ring homomorphism, i.e. (R[xi | i ∈ I], ι) is an R-algebra.

The most familiar instance of Definition 1.27 is when I is a finite set of the form
{1, . . . , n}: then the corresponding polynomial ring is usually denoted R[x1, . . . , xn].

Exercise 1.29. There is a useful characterising property of the R-algebra of poly-
nomials (R[xi | i ∈ I], ι): prove that for any R-algebra (S, φ) and for any fa-
mily (si)i∈I of elements of S, there exists a unique homomorphism of R-algebras
f : R[xi | i ∈ I] → S such that for all i ∈ I we have f(xi) = si. You first have to
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prove that the assignment

f

 ∑
α∈Mult(I)

cαx
α

 =
∑

α∈Mult(I)

φ(cα) ·
∏
i∈I

sαi
i

gives a well-defined R-algebra homomorphism; you then have to argue that, since
every polynomial can be “constructed” via iterated sums and products using only
the elements of the set {xi | i ∈ I}∪R ⊂ R[xi | i ∈ I] as starting “building blocks”,
and since the behaviour of f is forced on these building blocks, f is also uniquely
determined. This last idea is expanded in Definition 1.30.

Definition 1.30. Let (S, φ) be an R-algebra and let X ⊂ S be a subset. The sub-
R-algebra of S generated by X is the smallest subring of S containing the image of
φ and X: it contains all elements that can be constructed starting from elements
in =(φ) ∪X by repeated sums and products.4

We say that S is generated by X as an R-algebra if the entire S is the sub-R-algebra
generated by X. And we say that S is finitely generated as an R-algebra if there
exists a finite subset X ⊂ S such that S is generated by X as an R-algebra.

One reason to look for generators of R-algebras is the following: if we have two
R-algebras S, S′ and two homomorphisms of R-algebras f, g : S → S′ and we want
to check whether f = g, it suffices to find a generating set X for S as R-algebra
and check whether f and g agree on X or not. Moreover, one can often prove that
certain properties enjoyed by a ring R are also enjoyed by any finitely generated
R-algebra: if one is lucky enough, one sets an induction argument and reduces
the proof to checking that whenever there is a single element x ∈ S generating an
R-algebra S, if R enjoys the property then also S does.

Exercise 1.31. Prove that if f : S → S′ is a surjective R-algebra homomorphism
and S is finitely generated over R, then so is S′.
Use the previous to prove the following: an R-algebra S is finitely generated if
and only if there exists n ≥ 0 and a surjective homomorphism of R-algebras
R[x1, . . . , xn] � S.

1.5. Functions induced from polynomials. One of the reasons why polynomi-
als have been invented is that they give us a supply of functions, taking as input
one or more elements of a ring R, and giving as output an element of R.

Definition 1.32. Let I be a set, and let RI denote the set of all functions of
sets I → R. Given a polynomial P =

∑
α∈Mult(I) cαx

α ∈ R[xi | i ∈ I], we define

the corresponding function P∗ : RI → R as follows: given a function a : I → R,
which we see as an indexed family (ai)i∈I of elements of R, we define P∗(a) =∑
α∈Mult(I) cα ·

∏
i∈I a

αi
i .

The principle used here is the same as the one used in Exercise 1.29: the “variables”
xi can be regarded as place-holders for elements of the ring R, and replacing them
with a choice of such elements yields a new element of R, obtained after a finite
computation. The most familiar instance of Definition 1.32 is when I = {1, . . . , n},

4Someone will argue: don’t you have to put 0? Don’t you have to adjoin −a whenever you

have a? Answer: Im(φ) already contains 0 and also −1, now think of Exercise 1.11... If it makes
you more comfortable, however, you can always remember to put zero and additive inverses in

the ingredients of the recipe!
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yielding the familiar fact that every polynomial P ∈ R[x1, . . . , xn] gives rise to a
funcion P∗ : Rn → R.

Considering all polynomials at the same time, and considering the set RR
I

of all

functions RI → R, we obtain a map of sets −∗ : R[xi | i ∈ I]→ RR
I
. If we consider

on RR
I

the ring structure given by pointwise addition and multiplication, then −∗
is even a homomorphism of rings.

Example 1.33. Take R = R and I = {1}; then the above gives a map −∗R[x]→
RR, which is the usual map that associates with a polynomial in one variable with
coefficients in R the corresponding function R→ R. Note that the right hand side
RR contains all functions, and not only, say, the continuous or differentiable ones
(a very small portion of which is hit by the map −∗). This is to say that the map
−∗ is not surjective in general.

Exercise 1.34. Let R be a finite field, e.g. R = Z/p for some prime number p,
and let n ≥ 0; show that the map R[x1, . . . , xn]→ RR

n

is surjective in this case. It
cannot be injective because the target is a finite set, but the source is infinite.

The above suggests that, in general, a polynomial is more than its associated func-
tion!

2. Ideals and modules

2.1. Definition of ideals. Recall that the kernel of a group homomorphism ψ : G→
H is a normal subgroup of G, and in fact every normal subgroup N / G arises as
kernel of some group homomorphism. What is the analogous statement for rings?

Definition 2.1. Let R be a ring. A subset I ⊆ R is an ideal if it satisfies the
following properties:

• I is an additive subgroup of R (in particular, 0 ∈ I and hence I is non-
empty);

• for all a ∈ R and all b ∈ I we have a · b ∈ I.

The most basic examples of ideals in a ring R are the entire ring R, and the zero
ideal {0} ⊆ R. Every ideal I ⊆ R which is not the entire ring is called a proper
ideal. Note that the zero ring {0} has no proper ideal.
Another example is the following: if a ∈ R is an element, we let aR ⊆ R be the
subset of elements of the form a · b for some b ∈ R; then aR is easily checked to be
an ideal. Such an ideal is called a principal ideal; for a = 0 or a = 1 we recover the
previous examples.

Exercise 2.2. We say that an element of a ring a ∈ R is invertible if there is
another element a−1 ∈ R such that a · a−1 = a−1 · a = 1. Prove that if I ⊆ R is
an ideal and if I contains an invertible element of R, then I = R. Deduce that the
only ideals in a field are the zero ideal and the entire field.

Example 2.3. Using the Euclidean algorithm for division, one can show that all
ideals of the ring Z are principal: more precisely, for all n ≥ 0 we have an ideal
nZ ⊆ Z.

Example 2.4. Let R = R[x, y], the ring of polynomials in two variables with
real coefficients, and let I ⊆ R be the subset of those polynomials with vanishing
constant term. It is easy to check that I is an ideal, yet the degree 1 polynomials
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x and y both belong to I and have no common divisor belonging to I. It follows
that I is not a principal ideal.

The previous example shows that even if Definition 2.1 abstracts the properties of
the set of multiples of an element a ∈ R, as a subset of R, in general not all subsets
I ⊆ R with the given properties are of the form “multiples of a” for some a ∈ R.
One can then imagine that for every such I there is an “ideal” element of the ring R
(i.e., not necessarily an actual element of R), whose “multiples” ought to be the set
I: and that is, more or less, the historical reason for the use of the word “ideal”.5

Lemma 2.5. Let f : R → S be a ring homomorphism; then ker(f) := f−1(0S) is
an ideal.

Proof. Since f is in particular a homomorphism of abelian groups, ker(f) is an
abelian subgroup of R; moreover, if a ∈ R and b ∈ ker(f), then f(a·b) = f(a)·f(b) =
f(a) · 0 = 0, witnessing that a · b ∈ ker(f). �

Exercise 2.6. Prove similarly that if f : R→ S is a ring homomorphism and J ⊆ S
is an ideal, then f−1(J) is an ideal of R.

Conversely to Lemma 2.5, let R be a ring and I ⊆ R be an ideal, and consider
the quotient R/I. This is defined, as usual, as the quotient abelian group whose
elements are the cosets [a]I = {a+ b | b ∈ I} ⊆ R, for a ranging in R. Now we can
define a product on R/I by setting [a]I · [a′]I = [a ·a′]I ; Definition 2.1 is designed for
this assignment to be well-posed: if we pickb, b′ ∈ I and change our representatives
a, a′ of the classes [a]I , [a

′]I to a+ b, a′+ b′, the formula above would give the class
[(a+ b) · (a′ + b′)]I = [a · a′ + (a · b′ + b′ · a+ b · b′)]I , and since (a · b′ + b′ · a+ b · b′)
belongs to I, we get indeed the same class. We thus obtain a ring structure on the
abelian group R/I; moreover the quotient map R� R/I is a ring homomorphism,
whose kernel is R/I. Thus we have proved the following:

Proposition 2.7. Let R be a ring; then every ring homomorphism out of R has
an ideal of R as kernel, and conversely, every ideal of R can be exhibited as kernel
of some ring homomorphism out of R.

In fact, if f : R → S is a ring homomorphism, then as we saw ker(f) ⊆ R is an
ideal of R, and Im(f) ⊆ S is a subring of S. Since f vanishes on ker(f), it induces
a map of abelian groups f̄ : R/ ker(f) → Im(f); this map is not only bijective,
but it is also a ring homomorphism (where the source is given the ring structure
discussed above). We obtain the following diagram, which factors a generic ring
homomorphism f as a composition of a surjective ring homomorphism, followed by
a surjective one

R S

R/ ker(f) Im(f)

f

f̄

Exercise 2.8. Give a solution of Exercise 2.6 considering the composition of ring

homomorphisms R
f→ S � S/J and Lemma 2.5.

Example 2.9. Let n ≥ 0 and let nZ ⊆ Z be the ideal of multiples of n; then the
quotient ring Z/nZ is nothing but the ring Z/n from Example 1.4.

5In this case Wikipedia supports my story!
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Exercise 2.10. Let f : R→ S be a ring homomorphism and let I ⊆ R be an ideal.
Prove that the following are equivalent:

(1) f vanishes on I, i.e. I ⊆ f−1(0);
(2) there exists a unique ring homomorphism f̄ : R/I → S such that f is the

composite R� R/I
f̄→ S.

Before continuing talking of ideals, it is convenient to introduce/recall the notion
of module.

2.2. Modules. Modules are to rings what vector spaces are to fields: abelian
groups in which one can also multiply by scalars.

Definition 2.11. Let R be a ring. A module over R is an abelian group (M,+)
endowed with a map of sets ·M : R × M → M , called multiplication by scalars,
satisfying the following properties:

• for all m ∈M we have 1 ·M m = m;
• for all a, a′ ∈ R and m,m′ ∈M we have (a+ a′) ·M (m+m′) = (a ·M m) +

(a ·M m′) + (a′ ·M m) + (a′ ·M m′);
• for all a, a′ ∈ R and m ∈M we have (a ·R a′) ·M m = a ·M (a′ ·M m).

A homomorphism of R-modules from (M, ·M ) to (M ′, ·M ′) is a homomorphism of
abelian groups f : M →M ′ satisfying the following property:

• for all a ∈ R and m ∈M we have f(a ·M m) = a ·M ′ f(m).

Whenever there is no risk for confusion, we simply write ·, or even nothing at all,
for multiplication by scalars, instead of ·M . Similarly, from now on, for the product
· in a ring, we will from now on just remove the · as is usual. And we will often
present an R-module just by M instead of (M, ·M ), i.e. we will leave the operation
·M implicit.
For every ring R we obtain a category RMod of R-modules and homomorphisms
of R-modules.

Example 2.12. If R is a field, then an R-module is precisely an R-vector space,
and a homomorphism of R-modules is precisely an R-linear map. In fact, homo-
morphisms of R-modules are often called “R-linear maps” even for R not a field.

Example 2.13. Every abelian group M is (uniquely) a Z-module: given m ∈ M ,
for n ≥ 0 one is forced to define n ·M m = (1 + · · ·+ 1) ·M m = m+ · · ·+m, where
the last sum has n occurrences of m, and similarly the value of n ·M m is forced for
n < 0, as it must be equal to −((−n) ·M m). One can then check that the above
formulas give indeed a Z-module structure on M ; one can also check that every
homomorphism of abelian groups is Z-linear.

Exercise 2.14. Find an example of a ring R and an abelian group M such that M
cannot be made into an R-module. (Hint: take R = Z/2, and M containing some
element m with m+m 6= 0)
Find also an example of a ring R and an abelian group M such that M admits
more than one R-module structure. (Hint: take R = Z[x])

Example 2.15. Let R,S be rings and let φ : R→ S be a ring homomorphism, i.e.
(S, φ) is an R-algebra. Then we can define an R-module structure on the abelian
group S by setting, for all a ∈ R and s ∈ S, a ·S s := φ(a) ·S s, where the right
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hand side uses the product of the ring S. Thus every R-algebra gives rise to an
R-module with same underlying abelian group.
A particular case is when R = S and φ = IdR: every ring is a module over itself.
Another particular case is when S = R/I for some ideal I ⊆ R, and φ : R→ R/I is
the projection to the quotient (which we saw is a ring homomorphism): in analogy
with cyclic abelian groups (i.e. those of the form Z/n for some n ≥ 0), one calls an
R-module of the form R/I also a cyclic R-module.6

Lemma 2.16. Let M be an R-module. Then there is a bijection between the set
M and the set of R-linear maps R→M .

Proof. Given an element m ∈ M , we can define a map of sets fm : R → M by
sending a 7→ a ·m; one easily checks that this map is R-linear. Viceversa, given an
R-linear map g : R → M , one can evaluate g at the element 1 ∈ R, obtaining an
element g(1) ∈M . The two operations extablish inverse bijections between the set
M and the set of R-linear maps R→M . �

Exercise 2.17. Elaborate on Example 2.15 and construct a functor RAlg→ RMod
sending each object (S, φ) ∈ RAlg to the R-module defined there. What is a reason-
able assignment on morphisms? For your convenience, here follows the definition
of functor.

Definition 2.18. Given two categories C and C′, a functor F from C to C′, denoted
F : C→ C′, is a choice of data as following:

• for each object x ∈ Obj(C), an object F (x) ∈ Obj(C);
• for each objects x, y ∈ Obj(C), a map of sets HomC(x, y)→ HomC(F (x), F (y)),

denoted f 7→ F (f),

satisfying the following properties:

• for all x ∈ Obj(C) we have F (1x) = 1F (x);
• for all x, y, z ∈ Obj(C) and all morphisms f : x→ y and g : y → z in C, we

have F (g ◦ f) = F (g) ◦ F (f).

Exercise 2.19. Find an example of a ring R and an R-module M such that there
is no R-algebra S which is sent along the functor from Exercise 2.17 to an R-module
isomorphic to M . (Hint: you can recycle Exercise 1.12, but there should be simpler
examples)

Many of the familiar definitions and lemmas related to the theory of abelian groups
carry over to analogous definitions for R-modules, for a given ring R, in particular:

• given an R-module M , if N ⊆ M is a sub-abelian group and if the map
·M : R × M → M restricts to a map R × N → N , we say that N is a
sub-R-module of M (or just submodule, if the ring is implicit);
• if N is a submodule of M , then the quotient abelian group M/N carries a

natural R-module structure, by setting, for a ∈ R and m ∈ M , a · [m]N =
[a ·m]N ;
• if M,M ′ are R-modules and f : M → M ′ is an R-linear map, then ker(f)

is a submodule of M and Im(f) is a submodule of M ′, so that we can

6It is clear why the word “cyclic” is used for the abelian groups Z/n, at least when n ≥ 2: one
thinks of the elements of Z/n as assembled along a cycle... But now there is no geometric/visual

meaning left in the terminology when applied to a generic R/I, as a module over R
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define coker(f) as the quotient M ′/Im(f), which is again endowed with an
R-module structure;
• if N,N ′ ⊆ M are submodules, then also the intersection N ∩N ′ is a sub-

module;
• if N ⊆M is a submodule and f : P →M is an R-linear map, then f−1(N)

is a submodule of P ;
• if N ⊆M is a submodule, then every other submodule P ⊆M with N ⊆ P

gives rise to a submodule P/N ⊆ M/N , and viceversa, every submodule
P ′ ⊆ M/N gives rise to a submodule of M by taking its preimage under
the projection map M �M/N ;
• we can talk of short and long exact sequences of R-modules: in fact, whether

a sequence M →M ′ →M ′′ of R-modules and R-linear maps is exact at M ′

is a property of the underlying sequence of abelian groups (i.e., exactness
does not involve multiplication by scalars in R);
• given a set X and a family (Mx)x∈X of R-modules, we can consider the

product
∏
x∈XMx and put on it an R-module structure, by defining a ·

((mx)x∈X) = (a ·mx)x∈X ;
• inside

∏
x∈XMx we can consider the subset of those families (mx)x∈X such

that for all but finitely many x ∈ X we have mx = 0 ∈ Mx; this subset of∏
x∈XMx is denoted

⊕
x∈XMx, is called the direct sum of the R-modules

(Mx)x∈X , and it is indeed a submodule of the direct product
∏
x∈XMx.

Exercise 2.20. Prove all of the previous claims.

Exercise 2.21. There are useful characterising properties for the direct prod-
uct and the direct sum. Given a family (Mx)x∈X of R-modules, and another R-
module N , prove that an R-linear map f : N →

∏
x∈XMx is uniquely determined

by the maps fx : N → Mx obtained by postcomposing f with the projections
of the product onto each of its factors. Similarly, prove that an R-linear map
g :
⊕

x∈XMx → N is uniquely determined by the maps gx : Mx → N obtained by
precomposing g with the inclusions of each direct summand into the direct sum.

Definition 2.22. AnR-moduleM is free if there exists a setX and an isomorphism
of R-modules M ∼=

⊕
x∈X R, where the right hand side is the direct sum of several

copies of R as a module over itself, one copy for each x ∈ X.
A basis for a (free) R-module M is a collection of elements {mx}x∈X such that the

map of R-modules
⊕

x∈X R→M given by sending the element 1R ∈ R in the xth

summand to mx is an isomorphism of R-modules.

Example 2.23. Let R be a field and M be an R-module, i.e. an R-vector space.
We can pick a basis (mx)x∈X of M over R, and use it to exhibit an isomorphism⊕

x∈X R
∼= M . This shows that every vector space is free over the corresponding

field.
Let instead R = Z; then for all sets X, the Z-module

⊕
x∈X Z is either the zero

module (if X is empty), or has infinite cardinality (if X is non-empty): this shows
that Z-modules such as Z/n for n ≥ 2 are not free, since they cannot be isomorphic
to any direct sum

⊕
x∈X Z.

Example 2.24. The Z-module Z2 = Z×Z is free over Z; examples of bases are the
sets {(1, 0), (0, 1)}, {(1, 1), (0, 1)}, {(2, 3), (1, 2)} and in general any pair of elements
{(a, b), (c, d)} such that ad − bc = ±1. This shows that if a module is free, i.e. it
admits at least one basis, there are usually several bases.
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Example 2.25. Let n ≥ 0 and let Rn = R × · · · × R be the n-fold cartesian
power of R. Then Rn is free, with standard basis given by the elements ei =
(0, . . . , 0, 1, 0, . . . , 0), where the only occurrence of 1 is in position i, for 1 ≤ i ≤ n.

As for R-algebras, we have a notion of generation for R-modules. Compare the
following with Definition 1.30

Definition 2.26. Let M be an R-module and let X ⊆ M be a subset. The sub-
R-module of M generated by M , denoted SpanR(X), is the smallest sub-R-module
of M containing X: it contains all elements that can be expressed as

∑n
i=1 ai ·mi

for some n ≥ 0 and elements a1, . . . , an ∈ R and m1, . . . ,mn ∈ X.
We say that M is generated by X as an R-module if M = SpanR(X), and we say
that M is finitely generated as an R-module if there exists a finite subset X ⊆ M
such that M is generated by X as an R-module.

Recall Example 2.15, let (S, φ) be an R-algebra, and let X ⊆ S; then:

• if X generates S as an R-module, it also generates S as an R-algebra;
• if X generates S as an R-algebra, it need not generate S as an R-module:

consider the case S = R[x, y], then {x, y} generates S as an R-algebra, but
not as an R-module.

Example 2.27. The polynomial ring R[xi | i ∈ I] is generated, as an R-module,
by the set of all monomials xα, for α ∈ Mult(I). In fact these elements also form
a basis for R[xi | i ∈ I], thus exhibiting it as a free R-module.

Example 2.28. Given an R-module M and two submodules N,N ′ ⊆ M , the
sum N + N ′ := {m+m′ |m ∈ N,m′ ∈ N} ⊆ M coincides with the submodule
SpanR(N ∪N ′), and in particular is again a submodule.

Exercise 2.29. Let M be an R-module; prove that the following are equivalent:

• M is finitely generated over R;
• there exist n ≥ 0 and a surjective R-linear map Rn �M .

Prove also that the following are equivalent:

• M can be generated by a single element m ∈M ;
• M is isomorphic to a cyclic R-module, i.e. one of the form R/I for some

ideal I ⊆ R.

2.3. Back to ideals. We can now give a new definition of ideal: an ideal I ⊆ R is
a sub-R-module of the R-module R.

Definition 2.30. Given a subset X ⊆ R, we denote by (X) ⊆ R the ideal generated
by X, i.e. (X) = SpanR(X). If X = {a1, . . . , an} is finite, we also write (X) =
(a1, . . . , an) ⊆ R.

Note that for a ∈ R the ideal (a) is the same as the ideal aR.

Example 2.31. Given two ideals I, J ⊆ R, we can form three new ideals as follows:

• we can take their intersection, i.e. the ideal I ∩ J ⊆ R;
• we can take their product, i.e. the ideal I ·J = SpanR({a · b | a ∈ I, b ∈ J});
• we can take their sum, i.e. the ideal I + J = SpanR(I ∪ J) ⊆ R.

If R = Z, these operations have a very familiar description: let n, n′ ≥ 0, and
consider the two ideals (n) = nZ and (n′) = n′Z of Z:
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• the ideal (n)∩ (n′) is the ideal (lcm(n, n′)), generated by the least common
multiple of n and n′;
• the ideal (n) · (n′) is the ideal (n · n′), generated by the product of the two

natural numbers n and n′;
• the ideal (n) + (n′) is the ideal (gcd(n, n′)), generated by the greatest com-

mon divisor of n and n′.

Here we declare lcm(n, 0) = 0 and gcd(n, 0) = n for all n ≥ 0.

In the same way as the operations of intersection and sum of ideals correspond
to the classical operations of lcm and gcd on natural numbers, we should think of
containment I ⊆ J of ideals as the relation corresponding to divisibility n | n′ of
numbers, as shown in the following, easy lemma.

Lemma 2.32. Let R be a ring and let a, b ∈ R be two elements; then the following
are equivalent:

(1) a | b, by which we mean that there exists some (not necessarily unique)
c ∈ R such that ca = b;

(2) the ideal (a) contains the ideal (b).

Proof. If (1) holds, then the element b = ca belongs to (a) ⊆ R, and since (b) is
by definition the smallest submodule of R containing b, we must have (b) ⊆ (a).
Conversely, if (2) holds, then in particular b ∈ (a), and every element of (a) is of
the form ca for some c ∈ R. �

In particular, besides studying single ideals in a ring R, it is interesting to study
how ideals are related to each other by containment.

Exercise 2.33. This exercise should be compared with Exercise 2.6. Let f : R→ S
be a ring homomorphism and let I ⊆ R be an ideal:

• prove that if f is surjective, then the image f(I) ⊆ S is an ideal of S;
• find an example in which f is not surjective and in which f(I) is not an

ideal of S (though of course one can always consider the ideal (f(I)) ⊆ S
generated by f(I): the point is that (f(I)) may be strictly larger than
f(I)).

Lemma 2.34. Let R be a ring and let I ⊆ R be an ideal. Then the natural ring
homomorphism π : R � R/I induces a bijection between ideals in R containing I,
and ideals in R/I.

Proof. Given an ideal I ⊆ J ⊆ R, we can take the image π(J) ⊆ R/I, which by
Exercise 2.33 is an ideal of R/I; viceversa, given an ideal J ⊆ R/I, the preimage
f−1(J) is an ideal of R by Exercise 2.6, and it contains f−1(0) = I. The two
operation give inverse bijections between the set of ideals of R containing I, and
the set of ideals of R/I. �

Example 2.35. Let k be a field, and let n ≥ 0. As we saw in Definition 1.32, each
polynomial P ∈ k[x1, . . . , xn] gives rise to a function P∗ : kn → k; this gave us a
map of rings −∗ : k[x1, . . . , xn]→ kk

n

.
Now, if X ⊂ kn is any subset, we can consider the subset

I(X) = {f : kn → k | f |X ≡ 0} ⊂ kk
n

;

we have that I(X) is an ideal in the ring kk
n

, since for all functions f, g : kn → k
we have:
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• if f |X ≡ 0, then also −f |X ≡ 0 and (g ·f)|X ≡ (g|X) · (f |X) ≡ (g|X) ·0 ≡ 0;
• if moreover also g|X ≡ 0, then also (g + f)|X ≡ (g|X) + (f |X) ≡ 0 + 0 ≡ 0.

We can now consider the preimage I(X) of I(X) along the ring homomorphism −∗,
and obtain an ideal I(X) ⊆ k[x1, . . . , xn]: it contains all polynomials whose asso-
ciated function vanishes on X. This gives a way to construct ideals in polynomial
rings.

Somewhat more interesting is the opposite construction, starting from an ideal and
yielding a subset of kn.

Definition 2.36. Given an ideal I ⊂ k[x1, . . . , xn], we define V(I) ⊂ kn as the
subset of all elements (a1, . . . , an) such that for each P ∈ I we have P∗(a1, . . . , an) =
0 ∈ k. A subset of kn of the form V(I) is called an affine algebraic set.

The previous definition should be rather familiar when k = R, n = 2 and I = (P ) is
the principal ideal in R[x, y] generated by a single polynomial. Then V(I) = V(P ) is
the set of points (a, b) in the plane on which the function induced by the polynomial
vanishes; it is usually a curve, and in general the geometric properties of V(P )
contain information about the polynomial P .

Exercise 2.37. If k is a finite field, prove that every subset of kn is an affine
algebraic set. Prove that this is not true, instead, if k is an infinite field and n ≥ 1.

In general we have the containment I ⊆ I(V(I)), for any ideal I ⊆ k[x1, . . . , xn],
and X ⊆ V(I(X)), but both containments can be strict.

Example 2.38. Let X = N ⊂ R = R1; then I(X) = (0), indeed if a polynomial
P ∈ R[x] vanishes on all natural numbers, it must have infinitely many roots and
hence P = 0; this implies in turn that V(I(X)) = V(0) = R, which is strictly larger
than X.

Example 2.39. Let I = (x2) ⊂ R[x]; then V(I) = {0} ⊂ R, and the polynomials
P ∈ R[x] whose associated function vanishes at 0 ∈ R are precisely the polynomials
without constant terms, i.e. all polynomials that are multiples of x; it follows that
I(V(I)) = (x), which is strictly larger than I.
The situation becomes even worse if we consider I = (x2+1) ⊂ R[x]; then V(I) = ∅,
and hence I(V(I)) is the entire ring R[x]!

The previous examples show that in general not all subsets of kn and not all ideals
of k[x1, . . . , xn] are in the image of the operations V and I, respectively. When
k = R or C, many nice and interesting subsets of kn can be defined by polynomial
equalities, i.e. have the form V(I) for some ideal I; one can then notice that each
element in the ring k[x1, . . . , xn]/I gives a function from V(I) to k, and one can try
to translate algebraic properties of V(I) into geometric properties of V(I); but there
is also a viceversa: one might be mainly interested in the ring k[x1, . . . , xn]/I (after
all, according to Exercise 1.31, any finitely generated k-algebra has this form), and
one can hope to translate geometric properties of V(I) into algebraic properties of
k[x1, . . . , xn]/I. Algebraic geometry is, more or less, the systematic study of the
correspondence between what happens on the algebraic side and what happens on
the geometric side.
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3. Various types of ideals

We have seen the definition of ideals in a ring R, and how containment of ideals
generalises the notion of divisibility. We also saw that given an ideal I ⊆ R, we
get a quotient ring R/I. In this section we will study different types of ideals. We
will introduce several properties that an ideal in a ring may or may not have; a
common feature of these properties P(with P being prime, maximal, radical) is that
I ⊆ R has the property P if and only if (0) ⊆ R/I has the property P. One then
has parallel designations for rings whose ideal (0) satisfies P.

3.1. Prime ideals and the spectrum of a ring.

Definition 3.1. An ideal I ⊆ R is prime if:

• I is proper, i.e. I 6= R;
• for all a, b ∈ R, if ab ∈ I then at least one among a, b already lies in I.

A ring R is a domain if (0) is a prime ideal in R; in other words, R is a domain if
for all a, b ∈ R, if ab = 0 then a = 0 or b = 0 (or both).

We notice that if I ⊆ R is an ideal, then I 6= R if and only if (0) 6= R/I. Moreover,
for any a, b ∈ R, the conditions a ∈ I, b ∈ I and ab ∈ I are equivalent to [a]I = 0,
[b]I = 0 and [ab]I = 0, so that any pair a, b of elements of R witnessing that I is not
prime gives a pair [a]I , [b]I of elements of R/I witnessing that R/I is not a domain,
and viceversa.
It is standard to denote prime ideals by letters such as p and q.

Lemma 3.2. Let p ⊂ S be a prime ideal and let f : R → S be a ring homomor-
phism. Then f−1(p) is a prime ideal in R.

Proof. Denote q = f−1(p) ⊆ R, which is an ideal by Exercise 2.6. Let a, b ∈ R
and suppose that ab ∈ q; then f(ab) = f(a)f(b) ∈ p, and since p is prime, at least
one among f(a), f(b) lies in p, which implies that at least one among a, b lies in q.
We conclude by noticing that 1 /∈ q, since f(1) = 1 /∈ p (otherwise p would not be
proper). �

Definition 3.3. For a ring R, we denote by Spec(R), called the “spectrum of R”,
the set of all prime ideals of R.

Exercise 3.4. Starting from Lemma 3.2, construct a contravariant functor from
Ring to Set (the category of sets), sending each ring R to Spec(R).

One may ask: Why don’t we consider the even larger contravariant functor sending
R to the set of all of its ideals, and not only the prime ideals? We could use
Exercise 2.6 instead of Lemma 3.2 for this! Sure, one could do that; and in fact, it
is convenient to do both things at the same time. The standard way to do this is to
use the collection of all ideals of R to define a topology on R: one declares, for each
ideal I ⊆ R, a closed subset V(I) = {p ∈ Spec(R) | I ⊆ p}, and checks that this
is actually the collection of closed sets for a topology on the set Spec(R), which
is called the Zariski topology ; then one can enhance Spec(−) to a contravariant
functor from Ring to Top, the category of topological spaces.

Exercise 3.5. Check that the previous makes sense. That is, check that:

• for a ring R, the sets V(I) ⊆ Spec(R) give the collection of closed subset of
a topology;
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• for a ring homomorphism f : R→ S, the induced map of sets between the
spaces Spec(S) and Spec(R) is actually continuous.

You must have appreciated how I used the letter V both in the previous discussion
and in Definition 2.36; this is not a chance! I leave you the pleasure to reflect about
what the connection is, and just give a hint: if k is a field and n ≥ 0, each point
(a1, . . . , an) ∈ kn gives rise to the ideal (x1 − a1, . . . , xn − an) ⊆ k[x1, . . . , xn]: the
latter is a prime ideal (it is even a maximal ideal, see Definition 3.6), but beware
that not all prime ideals of k[x1, . . . , xn] have this form.

3.2. Maximal ideals.

Definition 3.6. An ideal I ⊂ R is called maximal if it is a proper ideal and it is
maximal with respect to inclusion among proper ideals of R.

By Lemma 2.34, we know that I ⊂ R is maximal if and only if (0) ⊂ R/I is
maximal. It is standard to denote maximal ideals by letters as m.
In general, if S is a ring such that (0) ⊂ S is a maximal ideal, then for all a 6= 0 in
S we have that the principal ideal (a) ⊆ S, being an ideal strictly larger than (0),
must be non-proper, i.e. we must have (a) = S; this implies that 1 ∈ (a), that is,
there exists b ∈ S with ab = 1, which is to say that a has a multiplicative inverse.
We conclude that a ring S is a field if and only if (0) is maximal in S.

Lemma 3.7. Every maximal ideal in a ring R is also a prime ideal.

Proof. Let m ⊂ R be a maximal ideal and let a, b ∈ R with ab ∈ m. Suppose both
a, b /∈ m; then both ideals (a,m) and (b,m) must be all of R, and in particular there
must exist elements c, d ∈ R and m,m′ ∈ m such that 1 = ca + m = db + m′. We
can now compute 1 = 1 ·1 = (ca+m)(db+m′) = cd ·ab+ca ·m′+db ·m+mm′, and
the last expression witnesses that 1 ∈ m, contradicting that m is a proper ideal. �

Exercise 3.8. Give another proof of Lemma 3.7 containing the sentence “every
field is a domain”.

Example 3.9. What are prime and maximal ideals in Z? Let n ≥ 0 and consider
the ideal (n) ⊆ Z.

• if n = 0, the ideal (0) is prime, since the product of two non-vanishing
integers is also non-zero; yet (0) is not maximal, since (0) ⊂ (n) for all
n ≥ 2;

• if n = 1, the ideal (1) is the entire ring Z, so (1) is not proper;
• if n = p is a prime number, then Z/(p) is a field (check/remember it!),

hence (p) is a maximal ideal;
• if n is not a prime number, we can factor n = ab with both a, b ≥ 2; then

we have a, b /∈ (n), yet ab ∈ (n), showing that (n) is not a prime ideal (and
hence also not maximal).

Exercise 3.10. Prove that if f : R → S is a surjective ring homomorphism, then
for any maximal ideal m ⊂ S we have that f−1(S) ⊂ R is also maximal. Find an
example of a non-surjective ring homomorphism f : R→ S such that some maximal
ideal of S pulls back to a non-maximal (yet prime!) ideal of R. (Hint: Z ↪→ Q)

An important proposition is the following: it guarantees that every non-zero ring
R admits some maximal ideal, and therefore also some prime ideal (instead, the
spectrum of the zero ring is the empty set). We will prove it in a generalised form
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in order to appeal to it also later; the case we are interested in right now is when
I = (0) and T = {1}.

Proposition 3.11. Let R be a ring, let I ⊆ R be any ideal and let T ⊆ R be a
subset that is disjoint from I. Let Σ be the family of all ideals J of R that contain I
and are disjoint from T . Then Σ admits at least one maximal element with respect
to containment. If moreover T is closed under multiplication, then all maximal
elements of Σ are prime ideals.

Proof. Recall Zorn’s lemma:

• a partially ordered set (poset) is a set P together with a relation �⊆ P ×P
and denoted “a � b” whenever (a, b) ∈�, satisfying the following properties:

– a � a for all a ∈ P ;
– if a, b ∈ P satisfy a � b and b � a, then a = b;
– if a, b, c ∈ P satisfy a � b and b � c, then a � c;

• a chain in a poset (P,�) is a subset C ⊆ P such that for all a, b ∈ C we
have a � b or b � a (or both, if a = b);

• an upper bound for a subset S ⊆ P is an element u ∈ P such that for all
a ∈ S we have a � u;

• a maximal element is an element m ∈ P such that there is no element a ∈ P
with m 6= a and m � a;

• Zorn’s lemma says that if (P,�) is a non-empty poset such that every chain
C ⊆ P admits an upper bound, then there exists at least one maximal
element in P .

We will not prove Zorn’s lemma (but if you have never seen the proof, go and read
it in the literature!). We will apply it to the poset (Σ,⊆). In order to do it, we
have to prove that every chain admits an upper bound. So let {Ii}i∈I be a chain
of nested ideals in R, all belonging to Σ, and parametrised by a set I. Denote by
Ī ⊆ R the union

⋃
i∈I Ii. We claim that Ī ∈ Σ:

• Ī is disjoint from T and contains I, as every Ii has these properties;
• Ī is an ideal: for all m,m′ ∈ Ī and a ∈ R we want to check that am+m′ ∈ Ī

(think about why this is enough); we can pick indices ia, ib ∈ I such that
a ∈ Iia and b ∈ Iib ; one of the containments Iib ⊆ Iia or Iia ⊆ Iib holds (here
we use that the ideals Ii form a chain), and hence there is a unique index

î ∈ I with a, b ∈ Iî; it follows that am+m′ ∈ Iî, and hence am+m′ ∈ Ī.

By Zorn’s lemma, we conclude that there is are maximal elements in Σ.
We now assume that T is closed under product, and we fix a maximal element
Ĩ ∈ Σ. To prove that Ĩ is a prime ideal, we mimic the argument from Lemma 3.7.
Let a, b ∈ R with ab ∈ Ĩ, and suppose both a, b /∈ Ĩ; then both ideals (a, Ĩ) and

(b, Ĩ) do not belong to Σ, and since they contain I they must both intersect T in

some element. This means that there must exist elements c, d ∈ R, m,m′ ∈ Ĩ amd
t, t′ ∈ T such that t = ca+m and t′ = db+m′. We can now compute the product
t · t′ = (ca+m)(db+m′) = cd · ab+ ca ·m′ + db ·m+mm′, and the last expression

witnesses that tt′ ∈ Ĩ, contradicting that Ĩ is disjoint from T . �

In particular, if I = (0) and T = {1}, Proposition 3.11 guarantees the existence

of ideals Ĩ that don’t contain 1 (and are therefore proper ideals) and are maximal
among proper ideals for containment, i.e. we have proved that maximal ideals in
the sense of Definition 3.6 exist. Of course, we must also check the tiniest of the
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assumptions in Zorn’s lemma, namely the poset has to be non-empty: in the case
of the zero ring, there is no ideal which doesn’t contain 1 (and that justifies that
the zero ring has also no maximal ideal, and in fact no prime ideal).

3.3. Radical ideals.

Definition 3.12. An ideal I ⊆ R is radical if the following holds: for all a ∈ I and
n ≥ 1, if an ∈ I then a ∈ I.
A ring R is reduced if (0) ⊆ R is a radical ideal. In other words, for all a ∈ R, if
an = 0 for some n ≥ 1, then a = 0.

We observe that if I ⊆ R is radical, then R/I is reduced: if [a]I ∈ R/I is an element
and [a]nI = [an]I is a power of [a]I that vanishes in R/I, then we must have an ∈ I,
and since I was a radical ideal of R we then have a ∈ I, i.e. [a]I is zero.
In general, an element a of a ring R admitting a vanishing power an for some n ≥ 1
is called a nilpotent element.

Example 3.13. Let n ≥ 1 be a natural number, and write n = pa11 . . . parr for the
factorisation of n into prime factors, with p1, . . . , pr different primes numbers and
a1, . . . , ar all positive. Then (n) is a radical ideal if and only if a1 = · · · = ar = 1,
i.e. if and only if n = p1 . . . pr is the product of distinct prime numbers. Indeed, let
q := p1 . . . pr and let a = maxri=1 ai; then qa is a multiple of n, so qa ∈ (n), and if we
assume (n) radical we must have q ∈ (n), implying the equality a1 = · · · = ar = 1;
conversely, if n = p1 . . . pr, then for any b ∈ Z and any c ≥ 1, if n | bc we must have
that each prime factor pi occurs with positive exponent in the factorisation of b,
and this implies n | b.

Example 3.14. LetX ⊂ kn be a subset, and consider the ideal I(X) ⊆ k[x1, . . . , xn];
we claim that I(X) is a radical ideal: for if P ∈ k[x1, . . . , xn] is a polynomial with
(P∗|X)n = (Pn)∗|X ≡ 0 for some n ≥ 1, for each point x ∈ X we have that the
element P∗(x) ∈ k vanishes when raised to the nth power; since k is a field, we just
have P∗(x) = 0 for all x ∈ X, and this implies thatP∗|X = (Pn)∗|X, implying that
P ∈ I(X).

Exercise 3.15. Prove that a prime ideal p ⊂ R is always a radical ideal. Prove
also that if (Ii)i∈I is a family of radical ideals, then the intersection

⋂
i∈I Ii is again

a radical ideal.

Definition 3.16. Let I ⊆ R be an ideal. The radical of I, denoted
√
I ⊆ R, is the

ideal of all elements a ∈ R such that an ∈ I for some n ≥ 1.

The previous definition requires a little check, namely that the set of elements of
R admitting a power inside I is indeed an ideal, and not just a subset of R. For
this, let m,m′ ∈

√
I and let a ∈ R, and let’s try to prove that am+m′ ∈

√
I. Fix

integers n, n′ ≥ 1 such that mn,m′n
′ ∈ I; then we have

(am+m′)n+n′ =

n+n′∑
i=0

(
n+ n′

i

)
(am)i(m′)n+n′−i;

and now we observe that each term of the previous sum is a multiple of at least
one among mn or (m′)n

′
, and thus lies in I. This shows that

√
I ⊂ R is indeed an

ideal.
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Exercise 3.17. Let I ⊆ R be an ideal; prove that
√
I is a radical ideal; and if I is

already radical, prove/observe by definition that
√
I = I. Prove also that if I ⊆ J

are two ideals in R, then
√
I ⊆
√
J .

Example 3.14 also shows that for any ideal I ⊂ k[x1, . . . , xn] we have
√
I ⊆ I(V(I)),

because we already knew (or it is a simple observation) that I ⊆ I(V(I)), and now
we can apply

√
− to both sides. This gives an explanation of what is going on in

the first part of Example 2.39: the ideal I(V(x2)) is not (x2) but its radical, which

turns out to be (x) =
√

(x2). But the second part still remains mysterious, as the
ideal (x2+1) ⊆ R[x] is already radical (it is even a prime, and even a maximal ideal:
what kind of field is the quotient R[x]/(x2 + 1)?), but we also know that (x2 + 1)
is a proper ideal... We will see later in the course the Nullstellensatz, explaining
what is going on (or rather, giving the fault to R and the fact that it is not an
algebraically closed field).

Example 3.18. In general, if I, J ⊆ R are radical ideals, the intersection I ∩ J is
radical, but neither the product IJ nor the sum I + J is radical:

• for the first, take I = J = (n) and R = Z;
• for the second, take R = R[x, y] and let I = (x2−y) and J = (y); then both
I and J are prime ideals (for instance, prove that both quotients R/I and
R/J are isomorphic to the domain R[x]), hence they are radical ideals. Yet
the sum I+J contains the element x2 = (x2−y)+y, but it does not contain
the element x. For this last statement, notice that I + J is contained in
the even larger ideal (x2, y) ⊆ R[x, y], which also does not contain x (prove
it!).

After Exercise 3.15 we know that the intersection of a family of prime ideals in a
ring R is always a radical ideal. In fact, the converse holds.

Proposition 3.19. Let I be an ideal in R; then
√
I =

⋂
p∈Spec(R) : I⊆p

p.

In particular the intersection of all prime ideals of R is precisely the ideal
√

(0),
i.e. the set of all nilpotent elements of R.

Proof. We assume that I is a proper ideal, the case I = R is left as exercise/nodding.

The inclusion
√
I ⊆

⋂
I⊆p p follows from the inclusion I ⊆

⋂
I⊆p p by applying

√
−.

For the converse, let a ∈ R and assume that a /∈
√
I; this means that the set

T =
{

1, a, a2, a3, . . .
}

of all powers of a is disjoint from I. By Proposition 3.11 we
can then find a maximal ideal among those that contain I and are disjoint from
T , and since T is closed under product, we know that this maximal ideal will be a
prime ideal, and we denote it p̃. We then have a /∈ p̃, so that a /∈

⋂
I⊆p p. �

We showed that (0) is the intersection of all prime ideals in any ring R. What
about the intersection of all maximal ideals?

Definition 3.20. The Jacobson ideal of a ring R is the ideal

J(R) :=
⋂

m∈Spec(R) |m maximal

m

Elements of the Jacobson ideal admit also the following characterisation:
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Lemma 3.21. Let a ∈ R; then a ∈ J(R) if and only if 1 − ab is invertible for all
b ∈ R.

Proof. Suppose first that a ∈ J(R), and for the sake of contradiction, suppose that
1 − ab is not invertible for some b ∈ R; then the principal ideal (1 − ab) ⊆ R is
proper, and by Proposition 3.11 it is contained in some maximal ideal m; it follows
that m contains both a and 1−ab, and hence 1 ∈ m, contradicting that m is proper.
Conversely, suppose that a is such that 1 − ab is invertible for all b ∈ R, and for
the sake of contradiction, suppose that m is a maximal ideal not containing a; then
the ideal (a,m) is strictly larger than m, so it has to be the entire ring R: it follows
that 1 ∈ (a,m) can be expressed as 1 = ab + m, for some b ∈ R and some m ∈ m.
In other words, m = 1 − ab ∈ m, but since we assumed 1 − ab invertible we have
again m = R, contradicting that m is proper. �

We conclude with a definition, on which we will have time to elaborate in the future.

Definition 3.22. A ring R is local if it admits exactly one maximal ideal m. In
this case we also clearly have J(R) = m.

4. Localization of rings

Warning: part of the notes in this section are copied from the lecture notes for the
course “Homological Algebra” that I taught in 2021-2022. All mistakes contained
there (and new ones) are present here.
Recall that, for a ring R, the sum makes R into an additive group, but the product
only makes R into a multiplicative monoid : in particular, not all elements of R
need to have a multiplicative inverse (and we saw, for instance, that only in the
zero ring the element 0 has an inverse!).
The basic idea behind the notion of localization is that given a ring R and a set
T ⊂ R of admissible “denominators”, we can construct a new ring RT (sometimes
denoted T−1R or R[T−1]) containing fractions of elements of R with an element of
T as denominator. This should generalise the construction of Q as ring of fractions
of elements of Z, with an element of Z \ {0} as denominator.

4.1. Definition of localization and first examples.

Definition 4.1. Let R be a ring, and recall that a ∈ R is invertible if there is an
element a−1 ∈ R with aa−1 = 1. We denote by R× ⊆ R the subset of invertible
elements.

For example, if k is a field, then k× = k \ {0}; instead Z× = {±1}; in the zero ring
the unique element is 0 = 1, which is invertible (with itself as inverse). We note
the following:

• R× is an abelian group, with 1 ∈ R as neutral element and with multipli-
cation in R as group operation;

• every ring homomorphism f : R → S sends R× inside S×, and in fact
restricts to a map of abelian group f : R× → S×;

• if f : R → S is a ring homomorphism, then the subset f−1(S×) ⊆ R is a
multiplicative subset in the sense of the following definition.

Definition 4.2. A multiplicative subset of a ring R is a subset T ⊆ R such that
1 ∈ T and T is closed under product.
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Definition 4.3. Let R be a ring and let T ⊂ R be a multiplicative subset. We
define RT as the set of equivalence classes of couples (r, t) ∈ R × T : two couples
(r, t) and (r′, t′) are equivalent if there exists s ∈ T such that st′r = str′. We
usually denote the equivalence class of the pair (r, t) ∈ R× T as a fraction r

t .

We define a sum on the set RT by setting r
t + r′

t′ = rt′+r′t
tt′ ; the neutral element of

the sum is the class 0
1 , and the additive inverse of r

t is −rt .

We define a product on the set RT by setting r
t ·

r′

t′ = rr′

tt′ ; the neutral element of

the product is 1
1 . With this structure, RT becomes a commutative ring.

Moreover, we have a map of rings τ : R → RT , called the localization map defined
by sending r 7→ r

1 .

Exercise 4.4. Check that the equivalence relation on R×T described in Definition
4.3 is indeed an equivalence relation. Check that the sum and the product are well-
defined, and make RT into a ring. And check that the map of sets τ : R → RT is
indeed a ring homomorphism.

Example 4.5. Let T = Z \ {0}, which is a multiplicative subset of Z; then the
localization ZT coincides with the definition of Q from school, and the map τ : Z→
Q is the obvious inclusion.

Example 4.6. More generally, if R is a domain, then R \ {0} is a multiplicative
subset and we can consider the localization RR\{0}. The latter is also called the
fraction field of R, denoted Frac(R), and, as the name suggests, it is a field: indeed
given any fraction a

b ∈ RR\{0}, either a = 0, and then one easily checks that
a
b = 0

b = 0
1 in RR\{0}, or a 6= 0, and then one observes that b

a is a multiplicative
inverse for a

b ; thus every non-zero element in RR\{0} is invertible.
A particular instance of the previous is when R = k[x1, . . . , xn], the ring of polyno-
mials in n variables with coefficients in a field k: then we obtain the fraction field
k(x1, . . . , xn), whose elements are algebraic fractions (fractions of polynomials) in
the variables x1, . . . , xn.

4.2. Localization at a prime and local rings. If R is a ring and p ⊂ R is a
prime ideal, then R \ p is a multiplicative subset of R (this, in fact, characterises
prime ideals among ideals), and hence we can form the localization RR\p; in this
situation there is a sort of convenient but inconsistent custom, namely to denote
the latter ring by Rp. So the standard notation is: if T ⊆ R is a multiplicative
subset, write RT according to Definition 4.3, but if p ⊂ R is instead a prime ideal,
write Rp for what ought to be written RR\p according to Definition 4.3...

In the situation above, we let m :=
{
a
b ∈ Rp | a ∈ p, b ∈ R \ p

}
⊂ Rp be the set of

all equivalence classes representable by a fraction a
b with a ∈ p and b /∈ p.

Exercise 4.7. Check that m is an ideal in Rp, by using the formulas for sum and
product from Definition 4.3.

The ideal m is proper: if we had 1
1 = a

b for some a, b with a ∈ p and b /∈ p, then
there would be c /∈ p with c · a · 1 = c · b · 1, yet ca ∈ p whereas cb /∈ p, as p is a
prime ideal. Incidentally, this also proves that Rp is not the zero ring.
We notice further that if a

b /∈ m, then a, b /∈ p and we can talk of the element
b
a ∈ Rp as well: this element is a multiplicative inverse of a

b . This proves that

Rp \ m ⊆ R×p , and since no element of m can be invertible (for then the ideal m

could not be proper) we have in fact an equality Rp \m = R×p .
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Every proper ideal I ⊆ Rp is disjoint from R×p , and therefore is contained in m:
this proves that m is the unique maximal ideal of Rp, and thus Rp is an example
of a local ring, as in Definition 3.22. This also explains why the words “local ring”
and “localization of a ring” are similar; it is however not yet clear what kind of
“locus” (place) is hidding in this terminology, but we will see at some point.

Example 4.8. Important instances of the previous discussion are the following

• if p is a prime number, then Z(p) ⊆ Q is the subring of rational numbers
that can be written as a fraction a

b with p - b; it has a unique maximal
ideal, containing all fractions a

b with p | a;
• consider the ring C[x] of polynomials in one variables, and its (maximal,

hence prime) ideal (x); then C[x](x) is the subring of C(x) of algebraic

fractions P
Q such that Q∗(0) 6= 0 (or in other words, the constant term of

Q is non-zero); C[x](x) has a unique maximal ideal, given by the fractions
P
Q in which P is divisible by x (has vanishing constant term); the ring

C[x]?(x) can also be included in the ring C[[x]] of formal Laurent series in
one variable, which is again a local ring (can you prove this latter statement?
Hint: the unique maximal ideal contains all

∑∞
i=0 aix

i with a0 = 0 ∈ C)

Exercise 4.9. Let R be a ring and let I ⊂ R be a proper ideal. Prove that the
following are equivalent:

(1) R is a local ring, with unique maximal ideal I;
(2) R \ I ⊆ R×;
(3) I is maximal and every element of the form 1 +m with m ∈ I is invertible.

The following is another particular example of localization to keep in mind.

Example 4.10. Let R be a ring, let t ∈ R, and let T =
{

1, t, t2, . . .
}

be the
multiplicative set of all powers of t. In this case the ring RT is often denoted Rt;
the elements of RT can be expressed as fractions a

tn for some n ≥ 0. In particular
we have:

• if R = Z and t = n = pa11 . . . parr is a positive integer with its prime
factorisation, then Zn is the subring of Q of rational numbers that can
be expressed as a fraction a

b , where all prime factors of b are in the set
{p1, . . . , pn};
• if R = k[x1, . . . , xn] and t = Q is a non-zero polynomial, then every element

P
Qr ∈ k[x1, . . . , xn]Q gives rise to a function ( PQr )∗ : kn\V(Q)→ k, sending a

point (a1, . . . , an) 7→ P∗(a1,...,an)
Q∗(a1,...,an)r ; this is well-defined because the function

Q∗ : kn → k attains only non-zero values on kn \ V(Q); considering all
algebraic fractions together, we obtain a map of rings

−∗ : k[x1, . . . , xn]Q → kk
n\V(Q),

such that the following diagram of ring homomorphisms commutes

k[x1, . . . , xn] kk
n

k[x1, . . . , xn]Q kk
n\V(Q)

τ

−∗

restrict

−∗

Exercise 4.11. Let R be a ring and t ∈ R. We want to prove that Rt is isomorphic,
as an R-algebra, to the quotient ring R[x]/(1− tx):
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• Prove that the R-algebra homomorphism R[x]→ Rt sending x 7→ 1
t sends

the ideal (1−tx) to 0 and thus factors through an R-algebra homomorphism
f : R[x]/(1− tx)→ Rt;
• Prove that the R-algebra homomorphism R→ R[x]/(1− tx) sends t to an

invertible element; deduce that it factors through an R-algebra homomor-
phism g : Rt → R[x]/(1− tx);
• Prove that f and g are inverse of each other.

Exercise 4.11 can of course be generalised in the following way: if R is a ring,
and T ⊆ R is a multiplicative subset, then in particular (T, ·, 1) is a multiplicative
monoid. We can let I ⊆ T be a subset generating T as a monoid, and we can
consider the quotient R-algebra

S := R[xt | t ∈ I]/(1− txt | t ∈ I)

where we start from the the polynomial algebra R[xt | t ∈ I] and we quotient by the
ideal generated by all elements of the form 1− txt, for varying t ∈ I. One can again
prove that S is isomorphic to RT . As the construction suggests in the case in which
I is infinite, one should not expect S to be finitely generated as an R-algebra (and
even less as an R-module!). So in general RT is not a finitely generated R-algebra.

Example 4.12. Consider Q = Z(0); then for any finite set of fractions{
a1

b1
, . . . ,

ar
br

}
⊂ Q,

the sub-Z-algebra of Q generated by a1
b1
, . . . , arbr is not the entire Q: for instance, it

doesn’t contain the fraction 1
p , where p is a prime number not dividing the product

b1 . . . br.

4.3. Properties of the localization map. We remark the following property of
the map τ : R→ RT from Definition 4.3: the image of the multiplicative set T ⊆ R
is contained in (RT )times: indeed an element t ∈ T ⊆ R is sent to τ(t) = t

1 , which

is invertible in RT with inverse 1
t .

Exercise 4.13. There is in fact a characterising property for the localization RT :
prove that for any ring S and any ring homomorphism f : R → S, if f(T ) ⊆ S×

then there is a unique ring homomorphism f̌ : RT → S such that f = f̌ ◦ τ , i.e. the
following diagram commutes

R RT

S.

τ

f
f̌

(Viceversa, it is clear that if f̌ : RT → S is any ring homomorphism then the
composite f̌ ◦ τ : R→ S sends T inside S×)

Lemma 4.14. The kernel of τ : R → RT consists of all elements a ∈ R for which
there exists s ∈ T with sa = 0 ∈ R.

Proof. Let a ∈ R; then τ(a) = a
1 vanishes in RT if it is equal to 0

1 ; by the definition
of the equivalence relation, this happens if and only if there is s ∈ T with s · a · 1 =
s · 1 · 0 = 0. �
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In particular, the localization RT is the zero ring if and only if ker(τ) = R (for
otherwise at least 1R would be sent to 1RT

), which happens if and only if 1 ∈ ker(τ),
which by Lemma 4.14 happens if an only if 0 ∈ T .

Lemma 4.15. The map τ : R→ RT is bijective if and only if T ⊆ R×.

Proof. Assume first that τ is bijective. Then τ is in particular injective, and by
Lemma 4.14 this implies that for all t ∈ T the map t · − : R → R is injective. Let
now t ∈ T and consider the element 1

t ∈ RT ; by surjectivity of τ , there must be an

element a ∈ R such that 1
t = a

1 , and by the definition of the equivalence relation
giving rise to fractions, we must have, for some s ∈ T , the equality sat = s; we now
use that s · − : R→ R is injective and “cancel” a factor s on both sides, obtaining
the equality at = 1, that is, t ∈ R×.
Viceversa, if T ⊆ R×, then τ is injective by Lemma 4.14, as each map s ·− : R→ R
is injective for s ∈ T ; to prove that τ is surjective, we observe that, given an element
a
t ∈ RT , we have a

t = at−1

1 , as witnessed, for s = 1, by the equality att−1 = a. �

Example 4.16. Let R = Z/6 and let T = {[1]6, [2]6, [4]6}. The map of rings
f̄ : Z/6 → Z/3 sending [n]6 7→ [n]3 has the property of sending [2]6 to the element
[2]3, which is invertible in Z/3, and similarly for [4]6 7→ [4]3 ∈ Z/3×. By Exercise
4.13 we obtain a ring homomorphism f : Z/6[2]6 → Z/3; this ring homomorphism
sends 1Z/6[2]6

7→ [1]3, and since [1]3 is an additive generator of Z/3, we conclude

that f is surjective.
To show that f is injective, we notice that every element in Z/6[2]6 can be written in

the form [a]6
[2]6

with a even: indeed we can start from any fraction [b]6
[2]n6

and then force b

to be even and n to be positive and odd by multiplying numerator and denominator
by a suitable, positive power of [2]6. We then notice that an odd power of [2]6 is
equal to [2]6 in Z/6. This shows that Z/6[2]6 has at most 3 elements, and hence f
must be injective.
In particular the map τ : Z/6→ Z/6[2]6

∼= Z/3 is not injective.

Exercise 4.17. Let T ⊆ T ′ ⊆ R be two multiplicative subsets. Construct a natural
homomorphism of R-algebras RT → RT ′ (where both rings have an R-algebra
structure given by the two maps called τ); prove in fact that there is exactly one
homomorphism of R-algebras RT → RT ′ , i.e. the choice you made was actually
forced.
Assume now that R is a domain and that T ′ = R \ {0}. Prove that the natural
map RT → R(0) is injective; so every localization of a domain is a subring of its
fraction field, just as in Example 4.8.

Exercise 4.18. We say that a multiplicative subset T in a ring R is saturated if
R× ⊆ T and if whenever a, b ∈ R and ab ∈ T , then we have a, b ∈ T . Prove
that every multiplicative subset admits a saturation T̄ , i.e. a smallest saturated
multiplicative subset containing T . Prove also that the canonical map RT → RT ′

from Exercise 4.17 is an isomorphism of R-algebras.

5. Ideals of localizations and spectra of rings

In Subsection 4.2 we have seen that if R is a ring and if p ⊂ R is a prime ideal,
then the ring Rp := RR\p is local, with maximal ideal given by the fractions a

b with
a ∈ p.
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In the following we ask ourselves the generic questions: how do ideals in RT compare
with the ideals of R?

5.1. Extension and contraction. In general, we have seen that a ring homomo-
morphism f : R → S can be used to “transfer” ideals of one ring to one of the
other.

• If J ⊆ S is an ideal, then f−1(J) ⊆ R is also an ideal; we have also seen that
if J is proper/prime, then also f−1(J) is proper/prime; after Proposition
3.19, we can observe that if J is radical, i.e. an intersection of prime ideals,
then also f−1(J) is an intersection of prime ideals, i.e. radical.
• If I ⊆ R is an ideal, then in general f(I) ⊆ S is not an ideal, but we

can always consider the ideal (f(I)) ⊆ S generated by f(I); in general we
cannot expect much about the new ideal given knowledge of the old one,
for example even if I is proper, (f(I)) may well be the entire S.

The two operations on ideals considered above are called “contraction” and “ex-
tension”; one sometimes denotes the contraction of J by Jc = f−1(J) and the
extension of I by Ie = (f(I)).
We now fix a multiplicative subset T of a ring R and focus on the ring homomo-
morphism τ : R→ RT . In this setting, we have the following.

• If J ⊆ RT is an ideal, then Jc ⊆ R is the subset of all a ∈ R such that
a
1 ∈ J ; note that if a

1 ∈ J , then in fact a
t ∈ J for all t ∈ T .

• If I ⊆ R is an ideal, then Ie ⊆ RT is the ideal generated by all fractions
a
1 with a ∈ I. This coincides with the subset J of RT of all elements that
can be represented as a

t with a ∈ I and some t ∈ T : indeed J ⊆ RT is
easily checked to be an ideal (using that I is an ideal) and J contains the
generators of Ie, so that Ie ⊆ J ; conversely, every element of J has the
form a

1 ·
1
t with a ∈ I, and hence J ⊆ Ie.

The next lemma answers the question: when is Ie proper?

Lemma 5.1. In the setting above, let I ⊆ R be an ideal; then Ie = (τ(I)) ⊆ RT is
proper if and only if I ∩ T = ∅.

Proof. Let us prove that Ie = RT if and only if there exists an element t ∈ I ∩ T .
If we assume Ie = RT , then 1

1 ∈ RT , and by the characterisation above we have

that 1
1 can be represented as a

s for some a ∈ I and s ∈ T ; the equality 1
1 = a

s
is witnessed by some s′ ∈ T such that s′ · a · 1 = s′ · 1 · s, and this implies that
the element t = s′a = s′s belongs both to I and to T . If instead we assume the
existence of t ∈ I ∩ T , then the element t

t belongs to Ie by the description given
above, but this element is 1 ∈ RT . �

Lemma 5.2. In the setting above, let J ⊆ RT be an ideal. Then (Jc)e = J .

Proof. In general, for a ring homomomorphism f : R → S and an ideal J ⊆ S we
have that f(f−1(J)) ⊆ J , and hence also the ideal of S generated by f(f−1(J))
is contained in J . In our situation, this proves that (Jc)e ⊆ J . For the other
containment, let a

t ∈ J ; then also a
1 = a

t ·
t
1 ∈ J , and thus a ∈ Jc; it follows that

a
1 ∈ (Jc)e, and finally we have a

1 ·
1
t ∈ (Jc)e. �

In general, for I ⊆ R, one has I ⊆ (Ie)c, but equality does not hold: for instance,
as soon as I ∩ T 6= ∅ one has (Ie)c = R.
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Example 5.3. If you don’t like the previous argument because it involves non-
proper ideals, consider the following: let T = {xn |n ≥ 0} be the set of all powers
of x in R = Q[x, y], and consider the principal ideal I = (xy) ⊆ Q[x, y]; then the
extension Ie ⊆ Q[x, y]x is the principal ideal generated by xy

1 ; this is the same as
the principal ideal generate by y

1 , as we can multiply the generator by an invertible

element in Q[x, y]x, for instance 1
x . The contraction of Ie is then (y) ⊆ Q[x, y]. So

we have ((xy)e)x = (y), and similarly you can check that ((y)e)c = (y).

In Example 5.3 it is crucial that (xy) is not a prime ideal in Q[x, y], as will become
clear with the next proposition.

Proposition 5.4. Let R be a ring, T ⊆ R a multiplicative subset, and consider
extension and contraction of ideals along the ring homomomorphism τ : R → RT .
Let p ⊂ R and p ∩ T = ∅; then pe ⊂ RT is again a prime ideal, and (pe)c = p.

Proof. By Lemma 5.1 we know that q := pe is a proper ideal of RT . Let now
a
t ,

b
t′ ∈ RT and assume that the product ab

tt′ lies in q; then we can represent the

same element ab
tt′ by a fraction m

t′′ with m ∈ p. The equality ab
tt′ = m

t′′ must be
witnessed by some s ∈ T for which we have in R the equality sabt′′ = smtt′; in
particular, since smtt′ ∈ p (as m ∈ p) we must have sabt′′ ∈ p. Now we use that p is
prime, so at least one among s, a, b, t′′ must lie in p; the elements s, t′′ are excluded,
since they lie in T which assumed to be disjoint from p, so at least one of a, b lies
in p, but this implies that at least one of a

t ,
b
t′ lies in q = pe. This proves that q is

a prime ideal.
We now show that qc = p. The inclusion p ⊆ qc is evident, so we focus on the
other inclusion. Let now a ∈ qc, then we have a

1 ∈ q; every element in q = pe can

be represented as b
t for some b ∈ p, and the equality a

1 = b
t must be witnessed by

some s ∈ T for which sat = sb; again, sb ∈ p, hence at least one among s, a, t must
lie in p, and s, t are excluded as they lie in T : we obtain that a ∈ p as desired. �

Recall Subsection 4.2: if p ⊂ R is a prime ideal in a ring, then by Proposition 5.4
prime ideals in Rp are in bijection with prime ideals in R that are disjoint from
R \ p: of these, p is clearly the unique maximal one, and this recovers the fact that
Rp is a local ring.

5.2. More on spectra of rings. Proposition 5.4 has the following striking con-
sequence: the set Spec(RT ) of prime ideals of RT is in bijection with the sub-
set of Spec(R) of those prime ideals that are disjoint from T . The inclusion
Spec(RT ) ↪→ Spec(R) is moreover given by contraction along the map τ : R→ RT :
this map is continuous if we consider on Spec(RT ) and Spec(R) the Zariski topology
from Subsection 3.1.
We also notice that Lemma 5.2 has the following implication: every ideal J ⊆ RT
can be obtained as extension of some ideal of R, for instance Jc. This implies that
not only the map Spec(RT ) ↪→ Spec(R) is a continuous injection, but also that the
topology on Spec(RT ) can be recovered as the pullback of the topology of Spec(R).
In other words, if we consider Spec(RT ) as a subset of Spec(R), then the Zariski
topology on Spec(RT ) coincides with the subspace topology of the Zariski topology
on Spec(R).

Example 5.5. Let T =
{

1, t, t2, . . .
}
⊆ R and consider the localization τ : R→ Rt.

Then the above discussion identifies Spec(RT ) with a subset of Spec(R), namely
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set of those prime ideals p of R such that T ∩ p = ∅. Notice now that for any
prime ideal p ⊂ R we have 1 /∈ p, and as soon as some power tn ∈ p we must also
have t ∈ p (prime ideals are radical). Thus for a prime ideal p ⊂ R there are two
possibilities:

(1) either t /∈ p, and then p ∩ T = ∅ and thus pe is a prime ideal in RT ;
(2) or t ∈ p; this is equivalent to the entire principal ideal (t) being contained

in p.

The Zariski topology on Spec(R) prescribes that the set of primes of type (2) form
a closed subset of Spec(R); it follows that the subset of primes of type (1) forms
an open subset; in other words, Spec(RT ) is an open subset of Spec(R).

Exercise 5.6. Let R be a ring; prove that the open sets Spec(Rt) ⊆ Spec(R), for
varying t ∈ R, form a basis for the Zariski topology.

Exercise 5.7. Generalize Example 5.5 to the case in which T is a multiplicative
set generated under multiplication by a finite subset of R. Find also an example of
a ring R and a multiplicative subset T of R such that Spec(RT ), considered as a
subset of Spec(R), is not open.

Exercise 5.8. Let R be a ring and I ⊆ R be an ideal, and recall Lemma 2.34.
Prove that there is a bijection between prime/maximal/radical ideals of R/I and
prime/maximal/radical ideals of R containing I.
Use the previous to show that one can identify Spec(R/I) with the closed subspace
of Spec(R) of all prime ideals containing I. In particular, remember to check that
the topology of Spec(R/I) agrees with the subspace topology of V(I).

We conclude the subsection by analyzing in detail the spectra of the rings k and
k[x], for a field k, as well as Z and, for a prime number p ∈ Z, the ring Z(p).

Example 5.9. Let k be a field. Then, as we have seen, there is a unique proper
ideal in k, namely (0), which is therefore also the unique maximal ideal and the
unique prime ideal. It follows that Spec(k) is a topological space with one point.
There is exactly one topology on a set with one point, so the Zariski topology is
that topology. Someone will say: What a boring space! How are we going to learn
anything about the field k by studying the space with a single point? That is true,
and indeed observe that all fields k give rise to the “same” space Spec(k), where
“same” means that these spaces are all homomorphic to each other. But that’s just
how it is.

Before continuing, let me insert here a definition (that you might have already
seen).

Definition 5.10. A principal ideal domain, short PID, is a ring R which is a
domain (see Definition 3.1) and all of whose ideals are principal, i.e. generated by
a single element.

Example 5.11. The ring Z is a PID, as can be shown using the Euclidean algorithm
for division of integers. The elements of Spec(Z) are (0) and all maximal ideal of
the form (p), for (p) a prime number. Each closed subset of Spec(Z) has the form
V(n), i.e. it is is given by all prime ideals containing a fixed ideal (n) ⊆ Z, for some
n ≥ 0; in particular:

• for n = 0 we have V(0) = Spec(Z), since (0) is contained in every prime
ideal;
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• for n = 1 we have V(1) = ∅, since (1) = Z is not contained in any prime
ideal;
• for n ≥ 2 we can factor n = pa11 . . . parr into prime factors, with all ai ≥ 1:

then n is an element of (and with that, (n) is contained in) exactly the
prime ideals (p1), . . . , (pr).

Notice that any finite subset of Spec(Z) \ {(0)} can be obtained as a closed subset
of Spec(Z). Notice also that the only closed subset containing (0) is the entire
space Spec(Z), and this is also the only closed subset with infinite cardinality. The
Zariski topology on Spec(Z) is in particular not Hausdorff.

Example 5.12. Let k be a field and consider the ring k[x] of polynomials in one
variable. Using the Euclidean algorithm for division of polynomials, one can prove
that k[x] is a PID; more precisely, there are two types of ideals in k[x]:

• (0) is an ideal;
• every ideal larger than (0) is generated by some polynomial P ∈ k[x]; up

to multiplying P by an element in k×, we can assume P monic, and in fact
for each ideal of k[x] larger than (0) there is a unique monic polynomial
P ∈ k[x] such that the ideal is (P ).

An ideal of k[x] is prime if and only if it is (0) or it is (P ) with P a monic and
irreducible polynomial. Thus Spec(k[x]) is in bijection with the set of irreducible
monic polynomials in k[x], together with 0.
The topology on Spec(k[x]) has the following closed subsets:

• Spec(k[x]) and ∅ are closed;
• every other closed subset has the form V(Q), for some monic polynomial
Q ∈ k[x], and it contains those prime ideals corresponding to the irreducible
factors of Q.

Every finite subset of the set of prime ideals corresponding to monic irreducible
polynomials of k[x] can be obtained as V(Q) for some Q, e.g. take Q equal to the
product of the irreducible polynomials whose associated prime ideals belong to the
given finite subset. We notice that the only closed subset containing the prime ideal
(0) is the entire Spec(k[x]), and all other closed subsets are finite.

Examples 5.11 and 5.12 show a similarity between the rings Z and k[x]: on the one
hand both of them are PIDs, on the other hands the spaces Spec(Z) and Spec(k[x])
have essentially the same description: this tells us that the way in which ideals and
prime ideals are nested inside Z is similar in flavour to the way in which ideals and
prime ideals are nested inside k[x].

Exercise 5.13. In fact one can prove that for any PID R the same phenomenon
happens: the set Spec(R) consists of the prime ideal (0) and the maximal ideals of R
(i.e., (0) is the only prime ideal which is not maximal); moreover the closed subsets
of Spec(R) are precisely the entire Spec(R) and all finite subsets not containing (0).
Try to prove it!

Example 5.14. Let p ≥ 2 be a prime number, and let us analyse the spectrum of
the ring Z(p), i.e. the localization of Z at the multiplicative subset Z \ (p); recall
that Z(p) can also be regarded as the subring of Q containing all rational numbers
that can be represented as a

b with p - b.
There are exactly two prime ideals in Z(p), namely (0) and (p) (here we regard
p = p

1 as an element of Z(p)), as a consequence of Proposition 5.4. Similarly, using
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Lemmas 5.1 and Lemma 5.2, one can show that each ideal of Z(p) is either (0) or
of the form (pr) for some r ≥ 0 (the entire ring Z(p) arising exactly in the case
r = 0). For all r ≥ 1 we have V(pr) = {(p)}, and hence we have exactly three
closed subsets in Spec(Z(p)), namely ∅, {(p)} and {(0), (p)}.
So Spec(Z(p)) is the topological space with two points, (0) and (p), such that (0)
is an open but not closed point, whereas (p) is a closed but not open point. Note
that this description does not depend on the prime number p.

Exercise 5.15. Consider the ring C[[x]] of formal Taylor expansions in the variable
x over C, and prove that Spec(C[[x]]) is also a space with two points, one being
open and the other closed, as in Example 5.14.

5.3. Elements of the ring as functions on the spectrum. In this subsection
we discuss, for a ring R, how to think of an element a ∈ R as a function defined on
the space Spec(R); this mimics how a polynomial P ∈ k[x1, . . . , xn] gives rise to a
function P∗ : kn → k.

Definition 5.16. Let R be a ring and let p ⊆ R be a prime ideal; then the ring
Rp is local, with unique maximal ideal given by pe. The residue field of R at p is
the field Rp/p

e, which we denote by k(p).

Notice that for each prime ideal p we can also first quotient R by p, obtaining a
domain R/p, and then take the fraction field Frac(R/p), i.e. localize R/p at its
prime ideal (0). The field Frac(R/p) is in fact canonically isomorphic to k(p) =
Rp/p

e. We moreover have a ring homomomorphism R→ k(p), given either by the

composition R
τ→ Rp � Rp/p

e = k(p) or R� R/p ↪→ Frac(R/p) = k(p).
We can now consider the ring

∏
p∈Spec(R) k(p), i.e. the product of all residue fields

of prime ideals of R; an element of
∏

p∈Spec(R) k(p) can be thought of as a “function”

defined on the space Spec(R) and with field values: yet for each point p ∈ Spec(R),
the value of the function at p is an element of the corresponding residue field k(p),
which depends on the point. We have a canonical ring homomomorphism θ : R →∏

p∈Spec(R) k(p), sending a ∈ R to the function p 7→ [a]p ∈ Frac(R/p) = k(p). Thus

we can see elements of R as some sort of functions on the space Spec(R).
Classically, one is interested in a topological space X and in order to understand
its properties one studies a ring of functions defined over X (or possibly functions
with some extra properties, e.g. continuous, smooth, holomorphic...). The above
shows that, to some extent, also the converse is possible: given a ring R, we can
construct a space, namely Spec(R), such that elements of R can be regarded as
functions on Spec(R).

Example 5.17. Let R = C[x], and recall from Example 5.12 that Spec(C[x])
contains the point (0) and a point (P ) for each monic, irreducible polynomial P ∈
C[x]. Now, since C is algebraically closed, each irreducible monic polynomial in
C[x] has the form x− a, for some a ∈ C: this shows that Spec(C[x]) is in bijection
with the set {(0)} t C. To avoid confusion, we will denote by η ∈ Spec(C[x]) the
point (0), whereas 0 ∈ C ⊂ Spec(C[x]) is really the ideal (x) = (x− 0).
For each a ∈ C, the residue field k(x−a) of C[x] at (x−a) is the quotient C[x]/(x−a):
since (x−a) is already a maximal ideal, the quotient is already a field and we don’t
need to take the fraction field. Now we can identify the rings C[x]/(x − a) and C
as follows: the ring homomomorphism C[x] � C sending P 7→ P∗(a) vanishes on
the ideal (x − a), and thus it induces a ring homomomorphism C[x]/(x − a) → C
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which is in fact an isomorphism. We conclude that all residue fields k(x − a) are
isomorphic to C, for all a ∈ C. Still, we have k(η) = C(x), i.e. the fraction field of
C[x].
And now let us see what kind of function on Spec(C[x]) an element P ∈ C[x]
induces along θ:

• the point η is sent to the element P = P
1 ∈ C(x);

• every other point a ∈ C ⊂ Spec(C[x]) is sent to the element [P ](x−a) ∈
C[x]/(x− a), which by the above identification is the element P∗(a) ∈ C.

So if we identify
∏

p∈Spec(C[x]) k(p) with the ring C(x) × CC, and if we forgett the

component relative to η, the function θ(P ) on Spec(C[x]) recovers the function
P∗ : C→ C.

Exercise 5.18. For each field k and each n ≥ 0 there is an inclusion of sets
kn ⊂ Spec(k[x1, . . . , xn]), given by sending (a1, . . . , an) to the maximal ideal (x1 −
a1, . . . , xn−an). Find an identification of each residue field k(x1−a1, . . . , xn−an)
with the field k, so that for each P ∈ k[x1, . . . , xn] the function θ(P ) restricts on
the subset kn ⊂ Spec(k[x1, . . . , xn]) to the function P∗ : kn → k.

Example 5.19. Each element n ∈ Z gives rise to a function θ(n) on Spec(Z): this
function sends the element η := (0) to n ∈ Q, and it sends (p) 7→ [n]p ∈ Z/(p). In
this case all residue fields are pairwise non-isomorphic!

Examples 5.17 and 5.19 look promising, as suggest that we can identify elements
of a ring R with certain functions on the space Spec(R). To ensure that this
idenfification is completely unproblematic, we would like the ring homomomorphism
θ : R→

∏
p∈Spec(R) k(p) to be injective. Is this the case?

Lemma 5.20. Let R be a ring. Then the kernel of the ring homomomorphism
θ : R →

∏
p∈Spec(R) k(p) is the nilradical

√
(0), i.e. the ideal of all nilpotent ele-

ments in R.

Proof. Let a ∈
√

(0), i.e. a ∈ R and an = 0 for some n ≥ 1. Then a ∈ p for all prime
ideals p ⊂ R (compare also with Proposition 3.19). It follows that [a]p = 0 ∈ R/p,
and hence θ(a) : p 7→ 0 ∈ k(p), so a induces the zero function7 on Spec(R), or in
other words, a ∈ ker(θ).
Viceversa, let a ∈ ker(θ); then for all p ∈ Spec(R) we have that [a]p vanishes as
element of Frac(R/p). Now the map τ : R/p → Frac(R/p) is injective (this is true
for any domain: see also Lemma 4.14), so we must have [a]p = 0 already in R/p,

i.e. a ∈ p. We conclude that a ∈
⋂

p∈Spec(R) p =
√

(0) by Proposition 3.19. �

Lemma 5.20 puts some limit to the approach to algebraic geometry in which we
consider a ring R as a certain ring of function on Spec(R), especially if the word
“function” is interpreted in the usual set-theoretic sense, i.e. something that can
be evaluated at each point of Spec(R) and that is characterised by its evaluta-
tion. The way to represent elements of R faithfully, even if R is not reduced, is
to consider a certain sheaf of rings on the space Spec(R). The sheaf, usually de-
noted OSpec(R), associates with every open set U of Spec(R) a certain ring, whose
elements are “regular functions” on U , but we no longer think of an element of
OSpec(R)(U) as something that can be evaluated on points, rather as something

7Pay attention: the “zero function” picks for each p ∈ Spec(R) a “different” zero, namely the
element 0 ∈ k(p).
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that can be restricted to smaller open subsets contained in U . In particular, the
ring OSpec(R)(Spec(R)) coincides with R. We stop here this discussion and invite
you to attend a course in algebraic geometry if you are curious!

6. Localization of modules

Warning: part of the notes in this section are copied from the lecture notes for the
course “Homological Algebra” that I taught in 2021-2022. All mistakes contained
there (and new ones) are present here.
Before starting the discussion about localization of modules, let me point out that,
given a ring homomorphism f : R → S, every S-module M can be given an R-
module structure by defining r ·m := f(m) ·m, for r ∈ R and m ∈M : we say that
M becomes anR-module by restriction of scalars along f , and we also write f∗M for
this module8; in fact the above construction gives a functor f∗ : SMod→ RMod.9

6.1. Definition of localization of modules and first examples.

Definition 6.1. Let R be a commutative ring and let T ⊆ R be a multiplicative
subset. An R-module M is T -local if for all t ∈ T the map t · − : M → M is
bijective.

Example 6.2. Let R = Z; then Z/3 is 2-local but not 3-local; Z is not n-local
for any n ≥ 2, as multiplication by n on Z is injective but not surjective; and Q is
Z \ {0}-local.

Example 6.3. Let R be a ring and T a multiplicative subset. Let M be an RT -
module, and consider M as an R-module by restriction of scalars along τ : R →
RT . Then M is a T -local R-module: indeed for every element t ∈ T the map
t · − : M → M coincides with the map t

1 · − : M → M , which has as inverse the

map 1
t · − : M →M (one of the maps that we might have forgotten).

In fact the converse also holds: if M is a T -local R-module, it is because it is
obtained from a RT -module by restriction of scalars. Concretely, for a fraction
a
t ∈ RT we can define the map a

t ·− : M →M as the composition of a ·− : M →M
and the inverse of the bijection t · − : M →M :

a
t · − : M M M.

a·− (t·−)−1

Check that two equivalent fractions induce the same map M →M ; check that these
maps assemble into an action of RT on M , so that the abelian group M becomes
an RT -module, and so that the old R-module structure can be retrieved using the
restriction of scalars along τ .

The previous example (almost) shows that the information of a T -local R-module is
equivalent to the information of a RT -module. To make this precise (and complete),
you can solve the following exercise.

8I changed the notation, putting here ∗ and reserving ∗ for another functor discussed later in

the course
9If you want to dive into category theory, you can also think of the assignment R 7→ RMod

as a contravariant functor from the category of rings to the category of... categories! What we
have done is to describe, for a map of rings f , what the associated map of categories (i.e. the

associated functor) is.
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Exercise 6.4. The restriction of scalars functor τ∗ is a functor RTMod → RMod
with the following properties:

• it is fully faithful (this boils down to proving that a set-theoretic map
between two RT -modules is an R-linear map if and only if it is also an
RT -linear map);
• its essential image is the full subcategory of RMod spanned by T -local R-

modules (this means that precisely the T -local modules can be obtained,
up to isomorphism, through the functor τ∗).

Localization of modules can be thought of as a way to pick an R-module M and
transform it into a new R-module MT that is T -local, i.e. into a RT -module (after
Exercise 6.4). The idea is essentially the same as in Definition 4.3

Definition 6.5. Let R be a ring and T ⊂ R be a multiplicative subset, and let
M be an R-module. We define MT as the set of equivalence classes of couples
(m, t) ∈M × T : two couples (m, t) and (m′, t′) are equivalent if there exists s ∈ T
such that smt′ = sm′t. The equivalence class of (m, t) is usually denoted as a
fraction m

t .

We define a sum on the set MT by setting m
t + m′

t′ = t′·m+t·m′
tt′ ; the neutral element

of the sum is 0
1 , and the additive inverse of m

t is −mt .
We define an action of RT by scalar multiplication on MT by setting r

t ·
m
t′ = r·m

tt′ .
The set MT becomes in this way an RT -module, and hence by Exercise 6.4 it can
be also considered as a T -local R-module.
Moreover, we have a map of R-modules γ : M →MT given by m 7→ m

1 .

Exercise 6.6. This is similar to Exercise 4.4. Check that the equivalence relation
on M × T described in Definition 6.5 is indeed an equivalence relation. Check that
the sum and the product by scalars in RT are well-defined, and make MT into an
RT -module. And check that the map of sets γ : M →MT is indeed R-linear.

Exercise 6.7. Prove the following characterising property of the localization of a
module: if M is an R-module, N is a T -local R-module for some multiplicative
subset T ⊆ R, and if f : M → N is R-linear, then there exists a unique R-linear
map g : MT → N such that the following diagram commutes:

M MT

N.

γ

f
g

Notice that g, as any R-linear map between RT -modules, is automatically RT -
linear.

6.2. Functoriality and exactness. We can now explore the functoriality of the
construction transforming an R-module M into an RT -module MT . Let g : M → N

be an R-linear map. Then the composition M
g→ N

γ→ NT is an R-linear map
M → NT with source M and target a T -local R-module: by Exercise 6.7 there exists
a unique R-linear map θ : MT → NT such that the following diagram commutes

M N

MT NT .

g

γ γ

θ
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The map θ is usually denoted gT ; concretely, it sends m
t 7→

g(m)
t . This construction

gives rise to a functor −T : RMod → RTMod, sending M 7→ MT and (g : M →
N) 7→ (gT : MT → NT ).

Exercise 6.8. Check that all properties needed for −T : RMod → RTMod are
fulfilled.

A crucial property of the localization functor −T is that it sends exact sequences
to exact sequences: in particular, it sends injective R-linear maps to injective RT -
linear maps, and surjective R-linear maps to surjective RT -linear maps.

Proposition 6.9. Let R be a commutative ring, and let T ⊂ R be a multiplicative
subset. Then the functor −T : RMod→ RTMod is exact.

Proof. We have to prove that if

M N P
f g

is a sequence of R-modules and R-linear maps which is exact at N , that is g ◦f = 0
and ker(g) = Im(f), then the sequence

MT NT PT
fT gT

obtained by applying the functor −T is also exact at NT . We start by checking
that the composition gT ◦ fT is the zero map from MT to PT : given an element
m
t ∈Mt, we readily compute gT (fT (mt )) = g(f(m))

t = 0
t = 0, using that g ◦ f is the

zero map from M to P . This shows also that Im(fT ) ⊆ ker(gT ).

For the opposite containment, let n
t ∈ ker(gT ) ⊆ NT . Then in PT we have g(n)

t = 0,
and by definition of localization this means that there is s ∈ T such that s ·g(n) = 0
in P . This is the same as saying that g(s·n) = 0, i.e. s·n ∈ ker(g), and by exactness
of the first sequence we can conclude that there is m ∈ M such that f(m) = s · n.

We can then compute fT (mst ) = f(m)
st = s·n

st = n
t , showing that n

t ∈ Im(fT ). �

6.3. Detecting properties after localization. Localization is in particular a
tool to replace a ring R by a local ring Rp, for any prime ideal p ⊂ R, and cor-
respondingly replace R-modules by Rp-modules; as we will see later in the course,
studying local rings and local module is often easier than studying rings and mod-
ules in general. We would therefore like to be able to use sistematically a strategy
as the following:

(1) start with a problem about a ring R and R-modules;
(2) for each prime ideal p ∈ Spec(R), transform the problem into one about

the ring Rp, which is local, and Rp-modules;
(3) solve the latter problem, leveraging that Rp is local;
(4) solve the original problem about R, using knowledge about all Rp.

Proposition 6.9 is the kind of result that can help us with step (2), as for instance
any exactness hypothesis in the formulation of our problem for R will give rise to an
analogue exactness hypothesis for the modified problem for Rp. We would now like
something that can help us with step (4), otherwise it would seem that Proposition
6.9 is not so useful.
In fact, proving that a functor is exact does not imply that the functor is also
interesting. Think of the zero functor, say from RMod to SMod, for any two rings
R,S, sending each R-module M to the zero S-module. Then the zero functor
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is exact, but we are hardly ever going to prove something interesting by solely
applying the zero functor!
In the following proposition we will see that localization at all prime ideals (in fact,
all maximal ideals suffice!) detects triviality of an R-module.

Proposition 6.10. Let R be a ring and let M be an R-module. If M is not the
zero module, then there exists a maximal ideal m ⊂ R such that Mm is not the zero
Rm-module.

Proof. Letm ∈M be a non-zero element. Then the set Ann(m) := {a ∈ R | am = 0}
is an ideal in R, and by hypothesis it doesn’t contain 1 ∈ R, i.e. it is a proper ideal.
By Proposition 3.11 we can find a maximal ideal m containing Ann(m). We claim
that Mm 6= 0, in particular because m

1 6=
0
1 ∈ Mm. For if we had m

1 = 0
1 , there

would be an element s ∈ R \ m for which the equality s ·m · 1 = s · 0 · 1, that is,
sm = 0; but this would mean s ∈ Ann(m), whereas s ∈ R \m ⊆ R \Ann(m). �

Proposition 6.10 has the following corollary.

Corollary 6.11. Let R be a ring and let M
f→ N

g→ P be a sequence of three
R-modules and two R-linear maps. Then the sequence is exact at N if and only if

for all maximal ideals m ⊂ R the localized sequence Mm
fm→ Nm

gm→ Pm is exact.

Proof. One implication is Proposition 6.9, so let us prove the converse: we assume

that for each maximal ideal m ⊂ R the sequenc Mm
fm→ Nm

gm→ Pm is exact, and

prove that M
f→ N

g→ P is also exact.
We observe, as a consequence of Exercise 6.8, that for all m the map gm ◦ fm is the
same as the localization (g ◦ f)m : Mm → Pm of the composite g ◦ f .
First, we prove that g ◦ f : M → P is the zero map. For this, let m ∈ M ; then we

know that gm ◦ fm(m1 ) = g◦f(m)
1 = 0 for all maximal ideals m, and this implies that

for each m ⊂ R maximal there is s /∈ m such that s · g ◦ f(m) = 0; this implies in
turn that Ann(g◦f(m)) is an ideal of R that is not contained in any maximal ideal,
so it has to be the entire ring R, and thus 1 ∈ Ann(g ◦ f(m)), i.e. g ◦ f(m) = 0.
Next we prove that ker(g) = Im(f). For this, define theR-moduleH = ker(g)/Im(f);
then for all maximal ideals m we have Hm = ker(g)m/Im(f)m, as the localization at
m of the short exact sequence of R-modules Im(f) ↪→ ker(g) � H. By hypothesis
we thus have Hm = 0 for all maximal ideals m, and by Proposition 6.10 this implies
that the R-module H vanishes. �

In particular, taking the cases M = 0 or P = 0 in Corollary 6.11, we obtain that
an R-linear map is injective/surjective if and only if, for all maximal ideals m ⊂ R,
the localization at m of the map is injective/surjective.
We conclude the section with the following lemma.

Lemma 6.12. Let R be a ring and let T be a multiplicative subset, and consider

extension of ideals along τ : R → RT . Then
√

(0)R
e

=
√

(0)RT
, where subscripts

indicate in which ring we are taking the zero ideal.

Proof. Any ring homomorphism sends nilpotent elements to nilpotent elements:

this implies that
√

(0)R
e
⊆
√

(0)RT
. Conversely, given a nilpotent element a

t ∈ RT ,

there is n ≥ 1 such that (at )n = an

tn = 0, and the latter equality is witnessed by
some s ∈ T such that san = 0. It follows that snan = (sa)n = 0, i.e. sa ∈ R is

nilpotent, and now we can write a
t = sa

st as an element in
√

(0)R
e
. �
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A crucial remark, which we will implicitly use in the proof of the next corollary, is

that in the setting of Lemma 6.12 the extended ideal
√

(0)R
e

coincides with the lo-

calization of the sub-R-module
√

(0)R ⊂ R at the multiplicative set T : here we use
again that ideals are submodules of rings, considered as modules over themselves.

Corollary 6.13. A ring R is reduced if and only if Rm is reduced for all maximal
ideals m ⊂ R.

Proof. The ring R is reduced, by definition, if and only if
√

(0)R is zero; this
happens by Proposition 6.10 if and only if for all maximal ideals m ⊂ R we have
(
√

(0)R)m =
√

(0)Rm
vanishes, and this is equivalent as requiring that Rm is a

reduced ring for all maximal ideals m ⊂ R. �

7. Noetherian rings and modules

Recall from Definition 2.26 that if R is a ring and M is an R-module, then we may
ask whether M is a finitely generated R-module or not; and Exercise 2.29 tells us
that, equivalently, we can ask whether M is isomorphic to a quotient of some R-
module Rn by a submodule. Finitely generated modules are easy to study, as one
can often prove a property by an inductive argument on the number of generators.
Notice that if M is a finitely generated R-module and f : M � N is a surjective
R-linear map, then N is also finitely generated.
On the other hand, very often one is studying a certain module M and then is led to
analyze a submodule N ⊂M (e.g., the kernel of an R-linear map out of M), and in
such situations it would help knowing that N is also a finitely generated R-module.
This is unfortunately not always the case, as the following example shows.

Example 7.1. Let R = R[xi | i ∈ N] be the polynomial ring in countably many
variables x0, x1, . . . indexed by the natural numbers. Then R is finitely generated
(in fact, it is cyclic) as an R-module. The ideal I = (xi | i ∈ N) ⊂ R, containing all
polynomials with vanishing constant terms, is an ideal and hence a sub-R-module
of R. Yet I is not finitely generated as an R-module. To see this, we consider the
quotient I/I2 ⊂ R/I2: it is also an R-module, and since every P ∈ I kills by scalar
multiplication every element in I/I2, we have in fact that I/I2 is an R/I-module
(and an R-module by restriction of scalars along the surjective ring homomorphism
R� R/I). Now if I were finitely generated over R, then also I/I2 would be finitely
generated over R, and equivalently I/I2 would be finitely generated over R/I. Yet
R/I ∼= R and I/I2 can be identified with the R-vector space with basis the infinite
set {[xi]I2 | i ∈ N}. This vector space is not finite dimensional, which means that
I/I2 is not finitely generated over R/I.

7.1. Definition of Noetherian modules and rings. In order to avoid situations
as in Example 7.1, one often restricts the attention to situations in which the
following definition holds.

Definition 7.2. Let R be a ring and M be an R-module. We say that M is
Noetherian (over R) if every sub-R-module of M (including M) is finitely generated
over R.
A ring R is Noetherian if it is Noetherian as a module over itself: that is, if every
ideal I ⊆ R is finitely generated.

Recall that if f : R → S is a ring homomorphism and M is an S-module, then M
becomes an R-module by restriction of scalars. We notice the following:
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• if M is finitely generated over R, then it is also finitely generated over S:
in fact, a finite subset X ⊂ M such that SpanR(X) = M also satisfies
SpanS(X) = M ; the converse doesn’t hold in general (think of f being the
inclusion Z ↪→ Q and M = Q), but it holds if f is surjective;
• similarly, if M is Noetherian over R, then it is also Noetherian over S:

this uses that every sub-S-module of M is also a sub-R-module (but not
viceversa, in general, unless again f is surjective).

Example 7.1 shows that R = R[xi | i ∈ N] is not a Noetherian ring. Yet, using the
notation from the same example, notice that R/I ∼= R is a finitely generated (in
fact, cyclic) R-module, and the only proper sub-R-module of R/I is {[0]I}, which
is surely finitely generated. So R/I is Noetherian as an R-module.
Let us now look at some examples of Noetherian rings.

Example 7.3. All principal ideal rings R are Noetherian: every ideal I ⊂ R is
generated by a single element, hence it is finitely generated. In particular, every
field k, every polynomial ring k[x] in one variable over a field, and Z are Noetherian.

Lemma 7.4. Let R be a ring and let M be a Noetherian R-module; then every
submodule N ⊆M is Noetherian, and similarly the quotient module M/N is again
Noetherian.

Proof. If N is a submodule of M , then every submodule of N is also a submodule
of M , so it is finitely generated because M is Noetherian: this proves that N
is Noetherian. Moreover, any submodule of M/N are all of the form P/N for a
submodule P ⊆M containing N ; since M is Noetherian we have that P is finitely
generated, and hence also the quotient P/N is finitely generated: this proves that
M/N is Noetherian. �

An immediate application of Lemma 7.4 is the following.

Corollary 7.5. Let R be a Noetherian ring and I ⊆ R be an ideal; then R/I is
also a Noetherian ring.

Proof. By Lemma 7.4, R/I is Noetherian as an R-module, i.e. every sub-R-module
of R/I is finitely generated; on the other hand, the sub-R-modules of R/I are in
fact the same as the sub-R/I-modules of R/I, i.e. the ideals of the ring R/I. �

Thus Noetherianity passes to quotient rings, and as we see now, also to localisations.

Lemma 7.6. Let R be a Noetherian ring and let T ⊆ R be a multiplicative subset;
then RT is also a Noetherian ring.

Proof. By Lemma 5.2, every ideal J ⊆ RT has the form (Jc)e; since Jc is an ideal
in R, it is finitely generated; it then follows that also (Jc)e = SpanRT

(τ(Jc)) is
finitely generated. �

The next example gives yet another tool to produce Noetherian rings.

Example 7.7. Recall that given two rings R and S, we have a ring R × S, with
coordinatewise operations. The neutral element of the product is the pair (1, 1),
which can be written as the sum eR + eS , with eR = (1, 0) and eS = (0, 1). Notice
that e2

R = eR, e2
S = eS and eReS = 0.

Given a R × S-module M , we can write each element m ∈ M as mR + mS , with
mR = (1, 0) · m and mS = (0, 1) · m: this shows that M = eRM + eSM , (i.e.
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M = SpanR×S(eRM + eSM), but in fact the two submodules eRM and eSM
intersect trivially: for if m ∈ eRM ∩ eSM , then eSm = 0 = eRm, but then also
m = 1 ·m = (eR + eS)m = 0.
The ideal (eR) = R×{0} ⊂ R×S acts trivially on the submodule eSM , which is thus
really a module over the quotient ring R × S/(eR) ∼= S; similarly, we can consider
eRM as an R-module, and in the end we have shown that M is the direct sum
eRM ⊕ eSM of an R-module (which becomes an R×S-module under restriction of
scalars along the surjection R×S � R) and an S-module (which similarly becomes
an R× S-module).
After this analysis, we conclude the following:

• an R × S-module M is Noetherian if and only if eRM is Noetherian over
R and eSM is Noetherian over S: for every sub-R × S-module N ⊂ M
decomposes as as a direct sum eRN ⊕ eSN of a sub-R-module of eRM and
a sub-S-module of eSM ;

• in particular, the ring R× S is Noetherian if and only if both R and S are
Noetherian rings.

There is a useful characterisation of Noetherian modules (and hence, of Noetherian
rings), given by Proposition 7.9, which needs the following definition.

Definition 7.8. Let R be a ring and M be a module. An ascending chain of
submodules of M is a family (Mi)i∈N of submodules Mi ⊆ M such that for i < j
we have Mi ⊆Mj ; one can thus write

M0 ⊆M1 ⊆M2 ⊆ . . . ⊆M

Proposition 7.9. Let R be a ring and let M be an R-module. Then the following
conditions on M are equivalent:

(1) M is Noetherian, in the sense of Definition 7.2;
(2) every ascending chain (Mi)i∈N of submodules of M is eventually constant,

i.e. it admits an index ī ∈ N such that for all i ≥ ī one has Mi = Mī;
(3) every non-empty family Σ of submodules of M admits a maximal element

with respect to inclusion.

Proof. We first prove that (1) implies (2). Let M be Noetherian and let (Mi)i∈N
be an ascending chain of submodules. Then M ′ :=

⋃
i∈NMi is also a submodule

of M (this uses that the submodules Mi are nested into each other), and as such
it is finitely generated. Let X ⊂M ′ be a finite subset with SpanR(X) = M ′; then
X ⊂

⋃
i∈NMi, and since X is finite (and the Mi are nested) there is ī ∈ N satisfying

X ⊂Mī; this implies, for all i ≥ ī, the following chain of inclusions

M ′ = SpanR(X) ⊆Mī ⊆Mi ⊆M ′

and evidently all inclusions must be equalities, in particular Mī = Mi.
We now prove that (2) implies (3). For this, let M be such that every ascending
chain of submodules is eventually constant, and let Σ be a non-empty family of
submodules of M ; suppose that Σ has no maximal element; then we can define
(using the axiom of choice) a function Ψ: Σ → Σ with the property that for all
N ∈ Σ, the submodule N ⊂ M is strictly contained in Ψ(N). We can now pick
N0 ∈ Σ and define an ascending chain which is not eventually constant by setting
Mi = Ψi(N0), contradicting the assumption.
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We finally prove that (3) implies (1). For this, let M be such that each family Σ
of submodules admits maximal elements. Let N ⊆ M be a submodule and define
ΣN to be the family of finitely generated submodules of N ; it is non-empty as it
contains {0}, so it admits a maximal element N̄ ; now N̄ is a submodule of N ,
and if N̄ 6= N we can pick m ∈ N \ N̄ and consider N̄ + SpanR(m): it is also a
finitely generated submodule of N , but it is strictly larger than N̄ , contradicting
its maximality in ΣN . This shows that N̄ = N , i.e. N is finitely generated. �

Proposition 7.9 will be used in the next subsection in the proof of the Hilbert basis
theorem.
To conclude the subsection, let me propose two exercises. We have seen in Lemma
7.6 that if R is Noetherian, then RT is also Noetherian. Does the converse hold?
It depends on what we mean by “converse”. Surely, Example 7.1 gives a non-
Noetherian ring R which is a domain, whose fraction field Frac(R) is an example
of a Noetherian localisation. The following are less naive attempts to define a
“converse”.

Exercise 7.10. Let R be a ring, and let t1, . . . , tr be a finite collection of elements of
R such that the ideal (t1, . . . , tr) is the entire R. LetM be an R-module, and assume
that each localisation Mti is Noetherian over Rti ; prove that R is Noetherian.
As a special case, if each localisation Rti is a Noetherian ring, then also R is
Noetherian.
(Hint: for all 1 ≤ i ≤ r, fix a finite set of generators (mi,j/t

ki,j
i )1≤j≤ni

for the
module Mti ; define a submodule M̄ ⊂ M as SpanR({mi,j}); prove that M/M̄ is
the zero R-module by using Proposition 6.10)

Exercise 7.11. As a pre-exercise, prove that if R and S are rings, then Spec(R×S)
can be regarded as the disjoint union of Spec(R) and Spec(S).
Let now k be a field, and consider the subring R ⊂ kN of those functions of sets
f : N→ k that are eventually constant, i.e. such that there is a ∈ k with f(n) = a
for n large enough. We want to prove that R is not Noetherian, yet for every prime
ideal p ⊂ R the localisation Rp is Noetherian.
For any subset I ⊂ N, define II as the ideal of R containing all functions f such
that f |I ≡ 0.

• Prove that indeed R is a subring of kN, and each II is an ideal of R.
• Prove that R is not Noetherian (consider the ideals I{n∈N |n≥i}, for i ∈ N).
• Prove that for each i ∈ N, the ideal I{i} is maximal.
• Prove that the set J := {f ∈ R | ∃n̄ ∈ N ∀n ≥ n̄ : f(n) = 0} ⊂ R is a max-

imal ideal.
• Prove that the previous are in fact all prime ideals of R. To do this, let
p ∈ Spec(R) and use the following dichotomy:

– either there exists f ∈ p which is eventually constant, equal to some
a 6= 0; prove that p = I{i} for one of the finitely many i ∈ N with
f(i) = 0 (there is at least one, otherwise f is invertible in R);

– or for every f ∈ p we have that f is eventually equal to 0; prove then
that p contains every function f that is eventually 0 (for instance,
for each such f there is a g which is eventually 1 ∈ k and such that
f · g = 0 ∈ R), that is J ⊆ p and thus p = J .

• Prove that Rp is isomorphic to k for all prime ideals of R.
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7.2. The Hilbert basis theorem for rings. In this subsection we prove the
following Theorem, which together with Examples 7.3 and 7.7, Corollary 7.5 and
Lemma 7.6 produces for us a lot of examples of Noetherian rings.

Theorem 7.12 (Hilbert basis theorem). Let R be a Noetherian ring. Then the
polynomial ring R[x] is also Noetherian.

In the proof of Theorem 7.12 we will use the standard notions of degree and leading
coefficient of a polynomial, which we recall now.

Definition 7.13. Let P ∈ R[x] \ {0} and write P =
∑n
i=0 aix

i, with an 6= 0. We
say that n is the degree of P , and an ∈ R \ {0} is the leading coefficient of P . We
also write n = deg(P ) and an = lc(P ).

The proof of Theorem 7.12 reminds the division algorithm for polynomials in k[x],
with k a field: if A,B ∈ k[x] are polynomials of degrees n and m respectively, with
n ≥ m, in order to divide A by B one considers the leading coefficients of A and B,
one divides the leading coefficients of A by that of B, obtaining an element a ∈ k;
then axn−m will be the first term in the quotient, and one proceeds by replacing
A with A− axn−mB, which is a new polynomial of degree strictly smaller than n;
one proceeds in this fashion until one can (possibly leaving a reminder at the end).

Proof. Let I ⊆ R[x] be an ideal; we want to prove that it is finitely generated. For
each i ∈ N we define Ii ⊆ R as the ideal generated by all leading coefficients of
elements P ∈ I of degree exactly i:

Ii = (lc(P ) |P ∈ I, deg(P ) = i) ⊆ R.

We observe that in fact, if P,Q are polynomials of degree i and r ∈ R, then there
are two possibilities:

• either lc(P − rQ) = lc(P ) − rlc(Q) 6= 0, in which case P − rQ is also a
polynomial of degree exactly i and lc(P − rQ) = lc(P )− rlc(Q),
• or lc(P − rQ) = lc(P )− rlc(Q) = 0.

This shows that Ii, as a set, can be characterised as the union

{0} ∪ {lc(P ) |P ∈ I, deg(P ) = i} .

We next observe that if P ∈ I has degree i, then xP ∈ I and deg(xP ) = i + 1;
moreover lc(P ) = lc(xP ). It follows that Ii ⊆ Ii+1 for all i ∈ N. By Proposition
7.9, the ascending chain

I0 ⊆ I1 ⊆ I2 . . .
is eventually constant, so there is ī ∈ N with Ii = Iī for all i ≥ ī. Moreover, since
R is Noetherian, each ideal Ii is finitely generated: for each 0 ≤ i ≤ ī let therefore
{ai,j}0≤j≤ni

be generators for Ii as an ideal of R; and for future convenience, let

us set ni = nī for all i > ī, and also ai,j = aī,j ; we can assume that all ai,j are

non-zero, and by the characterisation of Ii as a set we can find, for all 0 ≤ i ≤ ī
and 1 ≤ j ≤ ni, a polynomial Pi,j ∈ I of degree i with lc(Pi,j) = ai,j ; for future

convenience, for all i > ī we set Pi,j = xi−īPī,j for 1 ≤ j ≤ ni = nī.

We now claim that the finite set X := {Pi,j | 0 ≤ i ≤ ī, 1 ≤ j ≤ ni} generates I
as an ideal of R[x]; since each polynomial Pi,j with i > ī is a multiple of the
corresponding polynomial Pī,j , it is equivalent to prove that I is generated by the
set Y := {Pi,j | i ≥ 0, 1 ≤ j ≤ ni}.
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For the sake of contradiction, let (Y ) 6= I and let Q be a polynomial of minimal
degree in I \ (Y ); let d = deg(Q). We have lc(Q) ∈ Id, so there exist elements
r1, . . . , rnd

∈ R with lc(Q) = r1ad,1 + · · · + rnd
ad,nd

. We then consider the poly-
nomial Q′ := Q −

∑nd

j=1 rjPd,j : the formula exhibits Q′ as an element of I, and

moreover either Q′ = 0 or deg(Q′) < d, since the degree-d terms in the linear com-
bination for Q′ cancel out. If Q′ = 0, we have exhibited Q =

∑nd

j=1 rjPd,j as an

element of (Y ), which is a contradiction; otherwise, by our choice of Q, the element
Q′ has smaller degree than Q and thus must lie in (Y ): then the above formula
exhibits again Q as an element of Y , giving again a contradiction. �

An immediate consequence of Theorem 7.12 is that if R is a Noetherian ring and n ≥
0, then the polynomial ring R[x1, . . . , xn] is Noetherian: this follows by induction on
n, after noticing that R[x1, . . . , xn] is isomorphic to the ring (R[x1, . . . , xn−1])[xn]
of polynomials in xn with coefficients in the ring R[x1, . . . , xn−1].

7.3. The Hilbert basis theorem for modules. So far we have provided tools
to construct Noetherian rings, most notably Theorem 7.12. How about construct-
ing/recognising Noetherian modules over a (possibly non-Noetherian) ring? Lemma
7.4 gives us a tool in this direction, but in a certain sense, if M is an R-module, then
every submodule or quotient of M is “smaller” than M itself. The following lemma
allows us to construct/recognise “bigger” Noetherian modules from “smaller” ones.

Lemma 7.14. Let R be a ring, and let N
f
↪→M

g
� P be a short exact sequence of

R-modules. Then:

• if N and P are finitely generated, then also M is finitely generated;
• M is Noetherian if and only if both N and P are Noetherian.

Proof. For the first point, assume that n1, . . . , na ∈ N and p1, . . . , pb ∈ P generate
N and P , respectively, as R-modules, for some a, b ≥ 0. Let p̃1, . . . , p̃b ∈ M
be preimages of p1, . . . , pb along g. We claim that the finite list of elements
f(n1), . . . , f(na), p̃1, . . . , p̃b ∈ M generates M as an R-module. To prove this, let
m ∈M ; then g(m) ∈ P can be written as r1p1+· · ·+rbpb for suitable r1, . . . , rb ∈ R.
We then observe that the element m′ = m−(r1p̃1 +· · ·+rbp̃b) ∈M lies in the kernel
of g, hence in the image of f ; so m′ can be written as s1f(n1) + · · ·+ saf(na) for
suitable s1, . . . , sa ∈ R. It follows that m = s1f(n1)+· · ·+saf(na)+r1p̃1+· · ·+rbp̃b
can be generated using the list mentioned above.
For the second point, we notice that if M is Noetherian then both N and P ,
which are isomorphic to a submodule and a quotient module of M , respectively,
are Noetherian by Lemma 7.4. Conversely, suppose that N and P are Noetherian,
and let M ′ ⊆M be a submodule. Then g(M ′) is a submodule of P , and M ′∩f(N)
is a submodule of f(N) ∼= N ; it follows that both g(M ′) and M ′∩f(N) are finitely
generated. Since M ′ ∩ f(N) = M ′ ∩ ker(g), we have a short exact sequence of

R-modules (M ′ ∩ f(N)) ↪→ M ′
g
� g(M ′), and by the previous point we conclude

that M ′ is finitely generated. This concludes the proof that M is Noetherian. �

We present two corollaries of Lemma 7.14.

Corollary 7.15. Let R be a ring and let M and N be Noetherian R-modules; then
the direct sum M ⊕N is also a Noetherian R-module.
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Proof. There is a short exact sequence of R-modules M ↪→ M ⊕ N � N , so the
statement follows from Lemma 7.14. �

Pay attention: a generic sub-R-module of M ⊕ N is not of the form M ′ ⊕ N ′ for
M ′ ⊆ M and N ′ ⊆ N , so one cannot argue by simply invoking Noetherianity of
M and N to say that M ′ and N ′ are finitely generated: one has to go through a
slightly more complicated argument as the one in the proof of Lemma 7.14.

Corollary 7.16. Let R be a ring, let M be an R-module and let 0 = M0 ⊆ M1 ⊆
· · · ⊆ Mr = M be a sequence of nested sub-R-modules of M . Suppose that each
quotient Mi/Mi−1 is Noetherian, for 1 ≤ i ≤ r; then M is Noetherian.

Proof. We prove inductively, that Mi is Noetherian. The base case M1
∼= M1/M0

is one of the hypotheses. For the inductive step, if Mi−1 is Noetherian, then there
is a short exact sequence Mi−1 → Mi → Mi/Mi−1 and by Lemma 7.14, since the
two extreme R-modules are Noetherian, so is the one in the middle. �

We are now ready to prove the following Theorem, providing a simple criterion to
recognise Noetherian R-modules when R is itself a Noetherian ring.

Theorem 7.17. Let R be a ring. Then the following are equivalent:

• R is a Noetherian ring, in the sense of Definition 7.2;
• every finitely generated R-module M is a Noetherian R-module (and vicev-

ersa!).

Proof. Let us first assume that R is Noetherian and let M be a finitely generated R-
module; by Exercise 2.29 there exists a surjective R-linear map Rn �M , for some
n ≥ 0; by assumption R is a Noetherian R-module, and Corollary 7.15 implies that
Rn is a Noetherian R-module; it follows that M , which is isomorphic to a quotient
of Rn, is by Lemma 7.4 also Noetherian.
Viceversa, if we assume that every finitely generated R-module is Noetherian, then
R is a cyclic R-module, so R must be a Noetherian R-module: this is the definition
of a Noetherian ring. �

We conclude the subsection with a simple, but useful observation.

Example 7.18. Let k be a field. Then a k-vector space is Noetherian if and only
if it is finitely generated, i.e., if and only if it has finite dimension over k, as then
every sub-k-vector space has also finite dimension.

7.4. A glimpse on Artinian rings and modules. We conclude the section by
introducing a natural counterpart to the notion of Noetherian rings and modules:
compare the following with Definition 7.8 and Proposition 7.9. We will limit our-
selves to the part of the discussion that is completely parallel to the one for Noe-
therian rings and modules.

Definition 7.19. Let R be a ring and M be a module. A descending chain of
submodules of M is a family (Mi)i∈N of submodules Mi ⊆ M such that for i < j
we have Mi ⊇Mj ; one can thus write

M ⊇ M0 ⊇M1 ⊇M2 ⊇ . . .

Definition 7.20. An R-module M is Artinian if every descending chain (Mi)i∈N
of submodules of M is eventually constant, i.e. it admits an index ī ∈ N such that
for all i ≥ ī one has Mi = Mī.



46 ANDREA BIANCHI

A ring R is Artinian if the R-module R is Artinian: equivalently, every descending
chain of ideals in R is eventually constant.

Exercise 7.21. Prove that an R-module M is Artinian if and only if every non-
empty family Σ of submodules of M admits a minimal element with respect to
inclusion. You can in part adapt the proof of Proposition 7.9.

Example 7.22. Let k be a field; then a k-vector space is Artinian if and only if
it is finite dimensional: comparing with Example 7.18, we obtain that over a field
the notions of Artinian and Noetherian modules coincide.
In particular, ask has dimension 1 over k, k is an Artinian ring.

Example 7.23. Z is not Artinian: for example the descending chain of ideals
((2i))i∈N decreases strictly at each step. Similarly, if k is a field and n ≥ 1, then
k[x1, . . . , xn] is not Artinian, as witnessed by the chain of ideals ((x1)i)i∈N.

Example 7.24. Let k be a field and n ≥ 0; we claim that R = k[x]/(xn) is an
Artinian ring. To see this, notice first that the unique prime ideal in R, corre-
sponding to the unique prime ideal in k[x] containing (xn), is ([x]xn). Hence R
is a local ring, and by Exercise 4.9 for every P ∈ k[x] such that P∗(0) 6= 0 we
have that [P ]xn ∈ R×. Moreover, since k[x] is a principal ideal ring, also R is a
principal ideal ring. Given a nonzero ideal ([Q]xn) ⊆ R generated by the class of
some Q ∈ k[x], we can factor Q as xi · P with P∗(0) 6= 0 and 0 ≤ i ≤ n − 1,
and we obtain a factorisation [Q]xn = [xi]xn · [P ]xn in R. Since [P ]xn is invertible,
we conclude that our ideal ([Q]xn) can also be presented as ([xi]xn). This shows
that there are finitely many ideals in R, namely all ideals of the form ([xi]xn) for
0 ≤ i ≤ n (thus we recover also the zero ideal). And a ring with finitely many
ideals must be both Noetherian and Artinian (every descending or ascending chain
of ideals is eventually constant).

Example 7.25. If R is an Artinian ring and I ⊆ R is an ideal, then R/I is also
Artinian: every descending chain of ideals in R/I corresponds to a descending chain
of ideals containing I in R, so it must stabilise.
If R and S are Artinian rings, then Example 7.7 shows that every R × S-module
decomposes uniquely as a direct sum of an R-module and an S-module, both con-
sidered as R × S-modules by restriction of scalars along the two projections. It
follows that an R×S-module is Artinian if and only if its corresponding R-module
and S-module are both Artinian. And in particular, R × S is an Artinian ring if
and only if both R and S are Artinian.

The following is analogue to Lemma 7.14.

Lemma 7.26. Let R be a ring, and let N
f
↪→M

g
� P be a short exact sequence of

R-modules. Then M is Artinian if and only if both N and P are Artinian.

Proof. Let us first assume that M is Artinian. Then every descending chain of
submodules of N is mapped injectively along f to a descending chain of submodules
of M ; one chain stabilises if and only if the other does (use that f is injective),
so N is Artinian. Similarly, every descending chain of submodules of P pulls back
along g to a descending chain of submodules of M containing ker(g), and again one
chain stabilises if and only if the other does (use that g is surjective, so submodules
of P are in bijection with submodules of M containing ker(g)), so P is Artinian.
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Viceversa, let us assume thatN and P are Artinian, and let (Mi)i∈N be a descending
chain of submodules of M . Then (Pi)i∈N := (g(Mi))i∈N is a descending chain of
submodules of P , and (Ni)i∈N := (f−1(Mi))i∈N is a descending chain of submodules

of N . For all i ∈ N we have a short exact sequence Ni
f→Mi

g→ Pi.
By assumption on N and P , there is an index ī such that Ni = Nī and Pi = Pī for
all i ≥ ī; we obtain, for all i ≥ ī, a commutative diagram as follows, whose vertical
maps are inclusions and whose horizontal maps are restrictions of f and g:

Ni Mi Pi

Nī Mī Pī.

f

⊆

g

⊆ ⊆
f g

By assumption, the left and the right vertical maps are isomorphisms (in fact,
identities); by the five lemma, also the middle inclusion is an isomorphism, i.e.
Mi = Mī for all i ≥ ī. This concludes the proof that M is Artinian. �

A straightforward consequence of Lemma 7.26 is that the direct sum of a finite
collection of Artinian R-modules is again an Artinian R-module. The following is
analogue to Corollary 7.16.

Exercise 7.27. Let R be a ring, let M be an R-module and let 0 = M0 ⊆ M1 ⊆
· · · ⊆ Mr = M be a sequence of nested sub-R-modules of M . Suppose that each
quotient Mi/Mi−1 is Artinian, for 1 ≤ i ≤ r; then M is Artinian.

8. Primary decomposition

As we have seen in Proposition 3.19, every radical ideal I in a ring R can be
expressed as an intersection of prime ideals (namely, all prime ideals containing it).
In the case R = Z, this theorem reads as follows: let n ≥ 1 be a positive integer and
assume that n = p1 · · · · · pr is a product of distinct prime numbers, then (n) ⊆ Z is
a radical ideal and (n) = (p1) ∩ · · · ∩ (pr). We would like to express generic ideals
(possibly, non-radical ones) in terms of “simpler” ideals, where for instance prime
ideals are to be considered “simple”.

8.1. Irreducible ideals. For generic n ≥ 1 we can similarly write

n = pa11 ∩ · · · ∩ parr ,

and in fact we have (n) = (pa11 ) ∩ · · · ∩ (parr ); moreover the ideals (pari ) are of a
special type, at least because of the following reasons:

• they have a prime ideal as radical, i.e.
√

(paii ) = (pi) is a prime ideal of Z;
• they are irreducible ideals in the sense of the following definition.

Definition 8.1. An ideal I in a ring R is irreducible if it is proper and it cannot
be written as I1 ∩ I2 such that both I1 and I2 are strictly bigger than I.

We observe that I ⊆ R is irreducible if and only if (0) ⊆ R/I is irreducible.

Exercise 8.2. Prove that the irreducible ideals of Z are precisely (0) and all ideals
of the form (pa) for p a prime number and a ≥ 1.
Deduce that for n = pa11 . . . parr , the unique way to write (n) ⊆ Z as an intersection
of irreducible ideals with different prime ideals as radicals is (n) = (pa11 )∩· · ·∩(parr ).
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It would be interesting to investigate whether something similar holds more gener-
ally, i.e. if in general every ideal I in any ring R can be written as an intersection of
irreducible ideals, possibly in a unique way: this would be a generalisation to other
rings and ideals of the familiar fact that integers admit a unique factorisation. If
we were able to express every ideal I as a finite intersection of irreducible ideals,
this would be even better!
The following lemma will be needed a few times later, but starts showing that at
least prime ideals are always examples of irreducible ideals.

Lemma 8.3. Let p be a prime ideal in a ring R, and let I1, . . . , Ir be a finite
collection of ideals of R such that I1∩· · ·∩Ir ⊆ p. Then there is an index 1 ≤ i ≤ r
such that Ii ⊆ p. In particular p is irreducible in the sense of Definition 8.1.

Proof. Suppose for the sake of contradiction that for all 1 ≤ i ≤ r we can pick an
element ai ∈ Ii \ p; then the product a1 . . . ar belongs to each Ii, so it belongs to
I1 ∩ · · · ∩ Ir, yet it cannot belong to the prime ideal p, and this contradicts the
inclusion I1 ∩ · · · ∩ Ir ⊆ p. In particular if p = I ∩ J , we have I ⊆ p or J ⊆ p, and
since p ⊆ I and p ⊆ J we must have I = p or J = p. �

Example 8.4. One could alternatively say: In Z, for n = pa11 . . . parr as above, we
also have that the ideal (n) is the product (p1)a1 . . . (pr)

ar , and the prime ideals (pi)
are “product-irreducible” in the sense that they cannot be written as product of two
strictly larger ideals. Why don’t we try to generalise to other rings using product
of ideals instead of intersection as basic operation? One possible reason to prefer
intersection to product is that an intersection of a family of ideals only depends
on which ideals belong to the family, whereas in order to specify a product we also
need to specify exponents for each ideal considered: for instance, for every ring R
and every two ideals I, J ⊆ R, the intersection I ∩ J is equal to I ∩ I ∩ J , but the
products I2J and IJ may (or may not) be different. This makes intersection of
ideals into a somewhat simpler notion than product.
The lack of exponents when dealing with intersection of ideals has also the ad-
vantage of making it more likely that a decomposition of an ideal is unique; in the
following example we see directly that even existence of product decomposition into
product-irreducible ideals is not satisfied for some very basic rings.
Let k be a field and let R = k[x]/(x2 − x). There are exactly three proper ideals
in R, namely ([x]), ([x − 1]) and (0), and each of them is equal to its own square;
hence no ideal of R can be written as a product of product-irreducible ideals.
Using intersections, instead, we would just have that ([x]) and ([x − 1]) are irre-
ducible (they are prime ideals, and we apply Lemma 8.3), whereas (0) = ([x2−x]) =
([x]) ∩ ([x− 1]) can be written as an intersection of two irreducible ideals.

The following exercise shows that for a generic ring there is little hope to express
generic ideals as interesections of irreducible ideals.

Exercise 8.5. Let k be a field, and let R ⊂ kN be the subring of those functions
f : N→ k that satisfy at least one of the following:

(1) f is constant;
(2) there is n̄ ≥ 0 such that f(n) = 0 for all n ≥ n̄.

For every subset I ⊂ N, define II ⊂ R as the ideal containing all functions f that
vanish on I.

• Prove that indeed R is a subring of kN, and II is an ideal in R.
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• Prove that every ideal J ⊆ R is of the form II , where I := {i ∈ N | ∀f ∈ J f(i) = 0}.
• Prove that II ∩ II′ = II∪I′ . Deduce that the only irreducible ideals of R

are those of the form I{i}, for some i ∈ N (which are in fact all prime ideals
of R).
• Prove that IN = (0) ⊂ R cannot be written as a finite intersection of

irreducible ideals.

To avoid situations as the one in Exercise 8.5, we will focus in the rest of the section
on Noetherian rings. And here is a first, positive result.

Proposition 8.6. Let R be a Noetherian ring. Then every ideal of R can be
expressed as a finite intersection of irreducible ideals.

Proof. For the sake of contradiction, let Σ be the family of all ideals of R that
cannot be expressed as a finite intersection of irreducible ideals of R, and assume
Σ 6= ∅. Since R is Noetherian, we can pick a maximal element I ∈ Σ. If I were
irreducible, we would be done, as we could express I as a finite intersection indexed
over a set of one element. So I is not irreducible; then either I = R (in this case
we regard I as an intersection of ideals indexed by the empty set), or I = I1 ∩ I2
with both I1 and I2 proper and strictly larger than I: then by maximality of I in Σ
we have that both I1 and I2 can be expressed as finite intersections of irreducible
ideals, and this implies that also I has this property, contradicting I ∈ Σ. �

The following example shows that, even if existence is granted, we should not expect
uniqueness for a decomposition of an ideal as a finite intersection of irreducible
ideals. It will also motivate the quest for a type of ideals that is more general than
“irreducible” ideals (and we will identify into primary ideals a good candidate for
that).

Example 8.7. Let k be a field and consider the ring R = k[x, y]. Then the ideal
(xy, y2) can be written as the intersection (y) ∩ (x, y2); we have that (y) is prime,
hence irreducible, so let us check that (x, y2) is irreducible; to this aim, it suffices
to check that 0 is irreducible in the ring k[x, y]/(x, y2), and this ring is isomorphic
to k[y]/(y2), where the only ideals are ([y]) and (0); this shows that (y) ∩ (x, y2)
exhibits (xy, y2) ⊂ R as intersection of irreducible ideals.
Now, for any a ∈ k, one can also show that (xy, y2) = (y) ∩ (x + ay, y2) (exer-
cise!) and that (x+ ay, y2) ⊂ R is also an irreducible ideal (other exercise!). This
shows that there are at least as many decompositions of (xy, y2) as intersection of
irreducible ideals as there are elements in k.
To avoid the choice of a, we could try to replace (x + ay, y2) by the intersection⋂
a∈k(x + ay, y2); this intersection is the ideal (x2, xy, y2) = (x, y)2. It is not an

irreducible ideal: in fact it can be obtained by intersecting (x+a, y2)∩(x+b, y2), for
any two distinct elements a, b ∈ k. If one wants, one can also intersect three or four
or finitely many such ideals (as long as k contains many elemets). This produces
for us yet another example of an ideal in a Noetherian ring with a non-unique
decomposition as intersection of irreducible ideals.

To partially solve the problem from Example 8.7, we will introduce a new class
of ideals, called primary ideals, which at least for Noetherian rings will contain
all irreducible ideals; and we will study more generically decompositions of ideals
as finite interesections of primary ideals. In the situation of Example 8.7, we will
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have that (x, y)2 is primary (though not irreducible), and this will partially solve our
problem as this ideal looks more “canonical” than any ideal of the form (x+ay, y2).

8.2. Primary ideals.

Definition 8.8. Let R be a ring and I ⊆ R be an ideal. We say that R is primary
if it is proper and the following holds: for all a, b ∈ R such that ab ∈ I, either a ∈ I
or there is n ≥ 1 such that bn ∈ I.

Notice that the definition is asymmetric in a and b. In particular, if ab = ba ∈ I,
then either at least one between a and b lies in I, or both a and b admit a power
lying in I. Notice that every prime ideal is also primary, and in fact if an ideal is
both primary and radical, then it is a prime ideal. Finally, notice that I is primary
in R if and only if (0) is primary in R/I.

Example 8.9. Primary ideals of Z are precisely (0) and those of the form (pa) for
p a prime number and a ≥ 1. In particular, they coincide with irreducible ideals.
The ideal (x, y)2 ⊂ k[x, y], appearing also in Example 8.7, is primary but not prime
(check it directly, later we will see a general fact covering this).

Lemma 8.10. Let R be a ring and let q ⊂ R be a primary ideal. Then
√
q is a

prime ideal, and it is the unique minimum, with respect to inclusion, among prime
ideals containing q.

Proof. If a, b ∈ R and ab ∈ √q, then there is n ≥ 1 such that anbn ∈ q; then, since
q is primary either an ∈ q (implying a ∈ √q) or there is m ≥ 1 such that bnm ∈ q
(and this implies b ∈ √q). This proves that

√
q is a prime ideal. Moreover, every

prime ideal p is radical, so if p ⊇ q then p ⊇ √q. �

As a matter of notation, we say that a primary ideal q in a ring R is p-primary if√
q = p.

Lemma 8.11. Let R be a ring, let m be a maximal ideal and let I be an ideal.
Suppose

√
I = m. Then I is primary.

Proof. Let a, b ∈ R and assume ab ∈ I. If b ∈ m then there is n ≥ 1 with bn ∈ I,
so let us assume b /∈ m; then by maximality of m we can write 1 = m+ cb for some
m ∈ m and c ∈ R; it follows that 1 − cb = m ∈ m =

√
I, so there is r ≥ 1 with

(1−cb)r = i ∈ I. Multiplying by a and rearranging we obtain a = ia−[(1−cb)r−1]a,
and since (1−cb)r−1 is a multiple of cb (and in particular of b), we obtain a ∈ I. �

Example 8.12. Recall Example 8.7. Then each of the ideals (x + ay, y2) and
(x, y)2 is primary, as it has the maximal ideal (x, y) ⊆ k[x, y] as radical.

Example 8.13. Lemma 8.11 shows that if an ideal admits a maximal ideal as
radical, then it must be primary. Instead, if I ⊂ R is an ideal and

√
I = p is

a prime ideal, then I need not be primary. For instance, let k be a field and let
R = k[x, y, z]/(xy− z2). Then p = ([x], [z]) is a prime ideal, and I := p2 is an ideal

satisfying
√
I = p; yet even if the product [x] · [y] ∈ I, as it can be expressed as

[z] · [z] in R, we have that neither [x] ∈ I nor any power of [y] is in I. To see the
first, notice that R/I further quotients to k[x, y, z]/(x, y, z)2; to see the second, use
that R/I further quotients to R/p ∼= k[x, y, z]/(x, z) ∼= k[y].
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We conclude the subsection by proving that the notion of primary ideal can be
thought of as a generalisation of that of irreducible ideal, at least in Noetherian
rings.

Lemma 8.14. Let R be a Noetherian ring and let I ⊂ R be an irreducible ideal.
Then I is primary.

Before proving the theorem, we give a definition that will turn out to be very useful
in a few contexts.

Definition 8.15. Let R be a ring, let M be an R-module, let m ∈ M and let
N ⊂ M be a submodule. We denote by (N : m) ⊆ R the ideal of all elements
a ∈ R such that am ∈ N . If N is the zero submodule, we write in particular
(N : m) = Ann(m) ⊆ R (as we already did in the proof of Proposition 6.10).

We will often use Definition 8.15 for M = R and N = I being an ideal. We observe
that (I : a) ⊇ I always, that (I : a) = R if a ∈ I, and that if (Ii)i∈I is a family of
ideals, then (

⋂
i∈I Ii : a) =

⋂
i∈I(Ii : a) (thus “(− : a)” commutes with intersections,

just as “
√
−”). Finally, if I ⊆ J , then (I : a) ⊆ (J : a).

Proof of Lemma 8.14. Let a, b ∈ R and assume ab ∈ I. For each n ≥ 1 we have an
ideal (I : bn), and these ideals fit into an ascending chain

(I : b) ⊆ (I : b2) ⊆ (I : b3) ⊆ . . . .

Since R is Noetherian, the previous chain must stabilise, in particular there is n̄
with (I : bn̄) = (I : bn̄+1). We now claim that (a, I)∩ (bn̄, I) = I: if this is the case,
since I is irreducible we would have a ∈ I or bn̄ ∈ I, and this would conclude the
proof that I is primary.
So let x = ca + m = dbn̄ + m′ ∈ (a, I) ∩ (bn̄, I) be an element in the intersection,
with c, d ∈ R and m,m′ ∈ I. Then, multiplying by b, we obtain cab + mb =
dbn̄+1 + m′b, and since cab,mb,m′b ∈ I we conclude that dbn̄+1 ∈ I; this implies
that d ∈ (I : bn̄+1), and by out choice of n̄ we then also have d ∈ (I : bn̄). This in
turn implies that our element x = dbn̄ +m′ already lies in I. �

8.3. Primary decompositions. A primary decomposition of an ideal I in a ring
R is a description of I as a finite intersection of primary ideals qi:

I =

r⋂
i=1

qi.

Proposition 8.6 and Lemma 8.14 imply that every ideal in a Noetherian ring admits
a primary decomposition. Example 8.7 shows that, in general, this decomposition
is not unique. In fact, when working with primary decomposition, one should not
expect uniqueness also by thinking of the following simple reason: if q ⊂ R is a
primary but not prime ideal, then p :=

√
q is a prime ideal by Lemma 8.10, and

both “q” and “q ∩ p” are primary decompositions of q. We would then like to say
that the second decomposition is redundant, and only the first is “genuine”. The
following lemma helps us consistently in this direction.

Lemma 8.16. Let p be a prime ideal in a ring R and let q1, . . . , qr be p-primary
ideals of R; then also q :=

⋂r
i=1 qi is a p-primary ideal.
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Proof. First we observe that
√
q =

⋂r
i=1

√
qi, as in general the radical of an ar-

bitrary intersection of ideals is the intersection of the radicals of the ideals. This
implies

√
q = p. Let now a, b ∈ R with ab ∈ q ⊆ p; then for each 1 ≤ i ≤ r, either

a ∈ qi or b ∈ √qi = p or . If for all i we have a ∈ qi, then a ∈ q; otherwise there is
i forcing b ∈ p, and then b ∈ √q = p. This shows that q is also p-primary. �

It follows from Lemma 8.16 that if we have a primary decomposition I =
⋂r
i=1 qi

and some of the ideals qi have the same prime ideal as radical, then we can replace
them by their intersection, obtaining a new primary decomposition with fewer pri-
mary factors. Similarly, if there is i with qi ⊇

⋂
j 6=i qj , then we may neglect the

factor qi and reduce the size of a primary decomposition.

Definition 8.17. Let R be a ring and I and ideal in R. A primary decomposition
I =

⋂r
i=1 qi is minimal if the following hold:

• for all 1 ≤ i, j ≤ r with i 6= j we have
√
qi 6=

√
qj ;

• for all 1 ≤ i ≤ j we have qi +
⋂
j 6=i qj .

The previous discussion, together with Lemma 8.16, shows that if an ideal in a
ring has a primary decomposition, then it also has a minimal one. We are still
somewhat unsatisfied by Example 8.7, as it provides for each a ∈ k a different
primary decomposition of (xy, y2) ⊂ k[x, y] as (y) ∩ (x + ay, y2), and all these
decompositions are minimal; but we are also a bit happy because also (y) ∩ (x, y)2

is a primary decomposition of (xy, y2), and the latter decomposition feels more
“canonical” as it is termwise contained in each of the previous ones. In general,
if I =

⋂r
i=1 qi and I =

⋂s
i=1 q

′
i are two minimal decompositions, then we can

also reduce (
⋂r
i=1 qi) ∩ (

⋂s
i=1 q

′
i) to a minimal decomposition I =

⋂t
i=1 q

′′
i , such

that each q′′i is contained in some qj and in some q′l. So for every two minimal
decomposition there is one that is “finer” than both, and this is a sort of replacement
for uniqueness. There are in fact some characteristics of a primary decomposition
that are the same for each minimal primary decomposition, and we shall see them
in the following. As a teaser, notice that all minimal primary decompositions of
(xy, y2) considered above have exactly two factors, one having the prime ideal (y)
as radical, the other having the prime ideal (x, y) as radical. As a bigger teaser,
here is a definition.

Definition 8.18. Let R be a ring and let I ⊆ R be an ideal. We denote by
Ass(I) ⊆ Spec(R) the subset of those prime ideals p of the form p =

√
(I : a) for

some a ∈ R. We say that each prime ideal in Ass(I) is associated to I.

Before proving that Ass(I) governs how many factors any minimal primary decom-
position of I has, and which prime ideals occur as radicals of the factors, we need
an exercise and a proposition.

Exercise 8.19. Let R be a Noetherian ring and I ⊆ R be an ideal. Prove that

there is n ≥ 1 such that
√
I
n ⊆ I, where we consider the n-fold product of

√
I with

itself.

Proposition 8.20. Let R be a ring and let q be a p-primary ideal. Then the
following hold.

(1) for all x ∈ q we have (q : x) = R;
(2) for all x ∈ R \ q we have that (q : x) is p-primary;
(3) for all x ∈ R \ p we have (q : x) = q;
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(4) if R is Noetherian, then there is some x ∈ R \ q such that (q : x) = p.

Proof. (1) If x ∈ q, for all a ∈ R we have ax ∈ q, i.e. a ∈ (q : x).

(2) Suppose x /∈ q. First we prove that
√

(q : x) = p: on the one hand the

inclusion q ⊆ (q : x) implies that p ⊆
√

(q : x); on the other hand, if a ∈√
(q : x), then there is n ≥ 1 with xan ∈ q, and since q is primary and x /∈ q

we must have an ∈ q, i.e. a ∈ p =
√
q. Second, we prove that (q : x) is

primary: let a, b ∈ R such that ab ∈ (q : x), and let us prove that a ∈ (q : x)
or b ∈ p. By hypothesis abx = (ax)b ∈ q, hence either ax ∈ q (which means
a ∈ (q : x), or b ∈ p.

(3) Suppose x /∈ p. We surely have a containment q ⊆ (q : x); if a ∈ (q : x),
then ax ∈ q, and since no power of x lies in q (for p =

√
q), we must have

a ∈ q.
(4) Since R is Noetherian, by Exercise 8.19 there is a power of p which is

contained in q; we can take a minimal n ≥ 1 with pn ⊆ q, i.e. pn−1 * q
(for n = 1, we set pn−1 = R, which is definitely not contained in q). Let
x ∈ pn−1 \q; then by (2) we have (q : x) ⊆ p; moreover for all a ∈ p we have
ax ∈ pn ⊆ q, hence a ∈ (q : x).

�

In the following theorem, dealing with “uniqueness” of primary decompositions (as
opposed to “existence”), we remarkably do not assume that R is Noetherian.

Theorem 8.21. Let R be a ring, let I be an ideal of R, and suppose that I =
⋂r
i=1 qi

is a minimal primary decomposition of I (in particular, suppose that I admits a
primary decomposition). Then

{√
qi
}

1≤i≤r = Ass(I), in particular r = |Ass(I)|.

Proof. Let p ∈ Ass(I), i.e. there is x ∈ R with
√

(I : x) = p; then we have

p =
√

(I : x) =

√√√√( r⋂
i=1

qi : x

)
=

r⋂
i=1

√
(qi : x)

and we can now appeal to Lemma 8.3 to conclude that p =
√

(qi : x) for some i;

now Proposition 8.20 implies that
√

(qi : x) can only be equal to R or
√
qi, so we

must have p =
√
qi.

Conversely, let 1 ≤ i ≤ r; by minimality of the primary decomposition we can find
x ∈

⋂
j 6=i qj \ qi. Then we have

√
(I : x) =

√√√√√
 r⋂
j=1

qj : x

 =

r⋂
j=1

√
(qj : x) =

√
qi,

since by Proposition 8.20 we have
√

(qi : x) = p, whereas for all j 6= i we have√
(qj : x) = R.

This concludes the equality of sets
{√

qi
}

1≤i≤r = Ass(I); the equality r = |Ass(I)|
follows again from the assumption that the primary decomposition is minimal,
hence all prime ideals

√
qi are distinct. �

A direct consequence of Theorem 8.21 is that for an ideal I in a Noetherian ring R
the set Ass(I) is finite. We can in fact refine the last step of the proof of Theorem
8.21 in the Noetherian case as follows.
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Proposition 8.22. Let R be a Noetherian ring and I an ideal in R. Then for
each p ∈ Ass(I) there is y ∈ R such that (I : y) = p (and not only x ∈ R such that√

(I : x) = p as the definition of Ass(I) guarantees).

Proof. Let I =
⋂r
i=1 qi be a minimal primary decomposition of I, and assume by

Theorem 8.21 that p =
√
q1. Let again x ∈

⋂
j 6=i qj \ qi, so that

√
(I : x) = p. We

also have (I : x) =
⋂r
i=1(qi : x); using by Proposition 8.20 (1) we have (I : x) =

(q1 : x), by (2) we have that (q1 : x) is p-primary, and by (4) we can then find x′

such that ((q1 : x) : x′) = p. We can now identify the latter with ((I : x) : x′) and
finally with (I : xx′). �

8.4. Geometric interpretation. Let R be a ring; then Spec(R) is a topological
space, in which the closed subsets are the subsets of the form V(I) for some ideal
I ⊆ R. In fact, as we have seen, it suffices to consider radical ideals in order to
describe all closed subsets.
A consequence of Lemma 8.3 is that for any ideals I, J ⊆ R we have V(I ∩ J) =
V(I) ∪ V(J)

Definition 8.23. We say that a closed subset V(I) ⊂ Spec(R) is irreducible if it
cannot be written as a union of two strictly smaller closed subsets.

Lemma 8.24. If p is a prime ideal in a ring R, then V(p) ⊆ Spec(R) is irreducible.

Proof. Suppose that V(p) = V(I)∪V(J); then in particular p ∈ (V(I)∪V(J)), and
without loss of generality we may assume p ∈ V(I). This means that I ⊆ p, and
this implies V(p) ⊆ V(I), so that in the end V(p) = V(I). �

For R = k[x1, . . . , xn], we can try to see whether it is true that, for p ⊂ R a
prime ideal, the subset V(p) ⊂ kn cannot be written as a union of two smaller
algebraic subsets. This turns out to be false at least in the case in which k is
finite, and one should think of extending the discrete set kn to the topological
space Spec(k[x1, . . . , xn]) as a way to force the statement of Lemma 8.24.
A straightforward consequence of the primary decomposition of ideals in a Noether-
ian ring R is that radical ideals I ⊂ R admit the following primary decomposition:
I =

⋂
p∈Ass(I) p. In fact this decomposition must be minimal, as it has the correct

number of factors as predicted by Theorem 8.21.
Geometrically, this corresponds to the fact that every closed subset V(I) ⊆ Spec(R)
admits an expression as a union V(p1)∪ . . .V(pr) of irreducible closed subsets, such
that no V(pi) is contained in the union

⋃
j 6=iV(pj). The subsets V(pi) are called the

irreducible components of V(I), and it is again a consequence of Lemma 8.3 that
the decomposition of a closed subset V(I) as a finite union of irreducible closed
subsets is unique.
Let now I be any ideal (possibly, a non-radical one) in a Noetherian ring R; then
Ass(I) is a finite set; recall that for any minimal primary decomposition I =

⋂r
i=1 qi

we require qi * qj , but it may happen that
√
qi ⊆

√
qj . This happens precisely

in the situation of Example 8.7, where the associated primes of (xy, y2) are (y) ⊆
(x, y).

Definition 8.25. Let R be a ring and I ⊆ R and ideal. We denote by Ass′(I) ⊆
Ass(I) the subset of prime ideals that are minimal with respect to inclusion. We
call the elements of Ass′(I) isolated primes and the elements in Ass(I) \ Ass′(I)
embedded primes.
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As observed above, for I radical we have Ass′(I) = Ass(I). The viceversa clearly
fails (think of I being primary but not prime...). If I ⊆ R is an ideal in a ring that
admits a minimal primary decomposition I =

⋂r
i=1 qi, then Theorem 8.21 tells us

that the prime ideals
√
qi constitute the entire set Ass(I), which is then finite; if

follows that also Ass′(I) is finite in this case. Moreover we can write

√
I =

r⋂
i=1

√
qi =

⋂
p∈Ass(I)

p =
⋂

p∈Ass′(I)

p,

and the last expression gives a minimal primary decomposition for
√
I: it follows

that Ass′(I) = Ass(
√
I).

We further observe that if p̄ ∈ V(I) is any prime ideal, then
√
I =

⋂
p∈Ass′(I) p is

contained in p̄, and by Lemma 8.3 we obtain that p̄ contains one of the elements of
Ass′(I); this shows that Ass′(p) is the set of all minimal elements in V(I), and not
only (as the definition guarantees) in Ass(I).

8.5. Two funny exercises.

Exercise 8.26. Here is a funny exercise, a bit unrelated to the previous discussion,
but at least ideals of the form of Definition 8.15 show up. Let R be a ring and
suppose that every prime ideal of R is principal; then R is a principal ideal ring!
For the proof one can use the following strategy.

• For the sake of contradiction, let Σ be the family of all non-principal ideals
of R, and assume Σ 6= 0. Prove that Σ must have a maximal element using
Zorn’s lemma.
• Let I ∈ Σ be maximal; we claim that I is a prime ideal, and this would lead

to a contradiction. Let therefore a, n ∈ R with ab ∈ I. Assume a /∈ I; then
(I, a) is principal (why?), say generated by α. Moreover (I : α) contains
(I, b), so it is also principal, say generated by β, unless b ∈ I (why?).
Justify the two “why?”.
• Prove that I is principal, generated by αβ, and get a contradiction.

Exercise 8.27. Here is another funny exercise, similar to the previous. Let R
be a ring and suppose that every prime ideal of R is finitely generated; then R
is Noetherian! For the proof, one considers again the family Σ of non-finitely-
generated ideals and finds a maximal I ∈ Σ by Zorn; the claim is then that I is a
prime ideal, contradicting the hypothesis.
For this, let a, b ∈ I with ab ∈ I, and assume that a, b /∈ I. Then (a, I) is finitely
generated, say by a1, . . . , an. In particular every element of I can be written as
r1a1 + · · ·+ rnan for some ri ∈ R.
Consider now, for all 1 ≤ i ≤ n, the submodule Ni ⊂ Ri of those sequences
(r1, . . . , ri) such that r1a1+· · ·+riai ∈ I; prove that the set Ji = {ri | (r1, . . . , ri) ∈ Ni}
of all “last coordinates” of elements in Ni is an ideal of R, containing I but
also containing b. Conclude that each Ji is finitely generated, say by elements
ci,1, . . . , ci,ni

∈ Ji.
Find suitable elements di,j ∈ I for 1 ≤ j ≤ n and 1 ≤ j ≤ ni such that I = (di,j):
use here an argument as in the proof of Theorem 7.12.
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9. Artinian rings

We resume the discussion started in Subsection 7.4. Our aim is to prove the fol-
lowing theorem.

Theorem 9.1. Let R be a non-zero ring. Then R is Artinian (in the sense of
Definition 7.20) if and only if R is Noetherian and the Krull dimension of R is 0.

The statement of the theorem contains a new notion, that of Krull dimension. We
will start by introducing it.

9.1. Krull dimension. The Krull dimension is a basic invariant that one can
associate with a ring. We introduce it here, and we will study it more closely later
in the course.

Definition 9.2. Let R be a ring. For l ≥ 0, a proper chain of prime ideals of length
l is a chain p0 ⊂ p1 ⊂ · · · ⊂ pl ⊂ R of l + 1 distinct prime ideals in R. The Krull
dimension of R is defined as

dim(R) = sup {l ≥ 0 | ∃p0 ⊂ p1 ⊂ · · · ⊂ pl ⊂ R}
i.e. the supremum of lengths of proper chains of prime ideals. We set the Krull
dimension of the zero ring to be −∞. For non-zero rings, we have dim(R) ∈
N ∪ {+∞}.

Our notation for the Krull dimension in this course is just dim(R); sometimes one
considers also other notions of dimension on a ring, and then one usually writes
something like Krdim(R) to specify the Krull dimension. Note that the length of a
chain is one less than the number of prime ideals appearing in it; this is because for
all rings (except the zero ring, which doesn’t have any prime ideal) we always have
at least one prime ideal, so we are more interested in how much longer a proper
chain of prime ideals can be.

Example 9.3. A field k has a unique prime ideal (0), so dim(k) = 0. A PID R
which is not a field, like Z or k[x], has dimension 1: on the one hand we can find
a prime ideal p ⊂ R different from (0) (for otherwise (0) would be maximal), so
that (0) ⊂ p is a chain of prime ideals of length 1; on the other hand if (p1) ⊆ (p2)
are non-zero prime ideals, generated by p1, p2 ∈ R, then p1 | p2, so by the unique
factorisation theorem for PIDs we must have p2 = ap1 for some a ∈ R×, so that
(p1) = (p2).
The ring k[xi | i ∈ N] has infinite Krull dimension: indeed we can find arbitrarily
long proper chains of prime ideals, and even an infinite chain like (x1) ⊂ (x1, x2) ⊂
(x1, x2, x3) ⊂ . . . .

Example 9.4. Let R be a ring of finite Krull dimension d ≥ 0. Then dim(R[x]) ≥
d+ 1: given a proper chain of prime ideals p0 ⊂ · · · ⊂ pd ⊂ R of length d, we have
a proper chain of prime ideals of length d+ 1

pe0 ⊂ pe1 ⊂ · · · ⊂ ped ⊂ (ped, x) ⊂ R[x]

where pei is the extension of pi along the inclusion R ↪→ R[x] (check as exercise that
all given ideals are indeed prime ideals). In particular we have, for a field k, that
dim(k[x1, . . . , xn]) ≥ n.
Later in the course, we will see that in fact dim(R[x]) = dim(R)+1, and in particular
dim(k[x1, . . . , xn]) = n.
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We can now understand the statement of Theorem 9.1. In particular, it implies
that every Artinian ring is Noetherian, so if every descending chain of ideals in a
ring stabilises, then also every ascending chain stabilises: this fact is already non-
obvious at first glance. Note that the condition dim(R) = 0 is the same as saying
that every prime ideal in R is a maximal ideal.

9.2. Proof of Theorem 9.1. We split the proof of Theorem 9.1 into a few lemmas.
Throughout the subsection we always assume that the rings considered are non-zero
rings, without writing it.

Lemma 9.5. Let R be an Artinian ring. Then dim(R) = 0, and Spec(R) is finite.

Proof. Let p be a prime ideal in R; we want to prove that it is maximal. Equiva-
lently, we can prove that the domain R/p is a field. So let x ∈ R/p be a non-zero
element; then the descending chain of principal ideals

(x) ⊇ (x2) ⊇ (x3) ⊇ . . .

stabilises, and in particular there is n̄ with (xn̄) = (xn̄+1). This means that there
is a ∈ R/p with axn̄+1 = xn̄, i.e. xn̄(ax − 1) = 0 ∈ R/p. And now we use that
R/p is a domain, and that we assumed x 6= 0: we obtain ax − 1 = 0, so that
x ∈ (R/p)×. Thus every non-zero element in R/p is invertible, i.e. R/p is a field.
As a consequence, dim(R) = 0.
We now prove that Spec(R) is finite. For the sake of contradiction, suppose that
Spec(R) was infinite, and let (pi)i∈N be a family of distinct prime ideals in R. We
consider the descending chain of ideals

p1 ⊇ p1 ∩ p2 ⊇ p1 ∩ p2 ∩ p3 ⊇ . . .

which stabilises at some point. In particular there is n ≥ 1 with
⋂n
i=1 pi =

⋂n+1
i=1 pi;

this implies the inclusion
⋂n
i=1 pi ⊆ pn+1, and now Lemma 8.3 implies that pi ⊆

pn+1 for some index 1 ≤ i ≤ n. If the inclusion is strict, this would imply dim(R) ≥
1, contradicting what we have proved above; hence the inclusion is an equality,
contradicting our choice of distinct prime ideals. �

In particular, if R is an Artinian ring and Spec(R) = {m1, . . . ,mr}, then J(R) =⋂r
i=1 mi =

√
(0) ⊂ R. By definition of

√
(0), for each a ∈

√
(0) there is n ≥ 1 with

an = 0; a priori, n could depend on a and it could be arbitrarily large for varying
a; the following lemma shows that this is not the case.

Lemma 9.6. Let R be an Artinian ring; then then there is an integer n ≥ 1 such

that
√

(0)
n

= 0.

Proof. We have a descending chain of ideals√
(0) ⊇

√
(0)

2
⊇
√

(0)
3
⊇ . . .

and since R is Artinian we can find ī ≥ 1 such that
√

(0)
ī

=
√

(0)
ī+1

.

Suppose for the sake of contradiction that
√

(0)
ī
6= (0), and let Σ be the family of

ideals J ⊆
√

(0)
ī

such that J ·
√

(0)
ī
6= (0). An example of such an ideal is the

ring R, so Σ is non-empty. By Exercise 7.21, using again that R is Artinian, we can
find an ideal J̄ ∈ Σ which is minimal with respect to inclusion. Clearly J̄ 6= (0).
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Let now K = Ann

(
J̄
√

(0)
ī
)
⊆ R be the ideal of all elements a ∈ R such that

am = 0 for allm ∈ J̄
√

(0)
ī
. We claim thatK is a radical ideal. For this, let a ∈

√
K

and let n ≥ 1 be minimal such that an ∈ K; then (a)n−1J̄
√

(0)
ī
6= (0), hence the

ideal (a)n−1J̄ belongs to Σ, and since (a)n−1J̄ ⊆ J̄ , we must have (a)n−1J̄ = J̄ . It

follows that (0) = (a)nJ̄
√

(0)
ī

= (a)J̄
√

(0)
ī
, i.e. a ∈ K.

Finally, since K is a radical ideal, we have
√

(0) ⊆ K; in particular we have a chain
of inclusions

J̄
√

(0)
ī

= J̄
√

(0)
ī+1
⊆ J̄

√
(0)

ī
K = (0),

but this contradicts the fact that J̄ ∈ Σ. �

Lemma 9.6 gives a little evidence that Artinian rings are Noetherian: indeed for any

Noetherian ring R there is n ≥ 1 such that
√

(0)
n

= (0), as follows from Exercise
8.19.
The following lemma provides a bridge between the Artinian and Noetherian worlds;
in the end, all that is used is that for a vector space over a field k, both being
Noetherian and being Artinian are equivalent to being finite dimensional.

Lemma 9.7. Let R be a ring and let m1, . . . ,mn be (possibly non-distinct) max-
imal ideals of R such that m1 . . .mn = 0. Then R is Artinian if and only if it is
Noetherian.

Proof. We consider the chain of ideals (0) = m1 . . .mn ⊆ m1 . . .mn−1 ⊆ · · · ⊆ m1 ⊆
R as a chain of sub-R-modules of R. Each quotient m1 . . .mi−1/m1 . . .mi is an
R-module on which mi acts as zero by scalar multiplication, i.e. it is a R/mi-vector
space. Applying Corollary 7.16 and Exercise 7.27, we obtain R being Noetherian
is equivalent to each R-module m1 . . .mi−1/m1 . . .mi being Noetherian, which is
equivalent to each R/mi-vector space m1 . . .mi−1/m1 . . .mi being finite dimensional,
which is equivalent to each R-module m1 . . .mi−1/m1 . . .mi being Artinian, which
is equivalent to R being Artinian. �

We are ready to prove Theorem 9.1

Proof of Theorem 9.1. Let R be a ring, and assume either that R is Artinian, or
that R is Noetherian of dimension 0.
First, we prove that

√
(0) can be written as a finite intersection m1 ∩ · · · ∩ mr of

maximal ideals. For R Artinian, this Lemma 9.5. For R Noetherian of dimension
0, this is a consequence of the existence of primary decompositions in Noetherian
rings: as we saw in Subsection 8.4 we can express

√
(0) =

⋂
p∈Ass((0)) p as a finite

intersection of prime ideals, and if dim(R) = 0 all prime ideals are maximal.

Second, we prove that there is n ≥ 1 such that
√

(0)
n

= (0). For R Artinian, this
is Lemma 9.6. For R Noetherian (of dimension 0), this is an application of Exercise
8.19.
Using the previous, in either hypothesis on R we obtain a chain of inclusions

mn1 . . .m
n
r ⊆ (m1 ∩ · · · ∩mr)

n =
√

(0)
n

= (0),

and by Lemma 9.7 we conclude that also “the other condition” on R holds. �
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9.3. Local Artinian rings. If the word “dimension” is not chosen at random,
we should expect that a geometric object associated with R, such as Spec(R),
should really look as something of dimension dim(R). This intuition is for in-
stance compatible with what we claimed in Example 9.4, that for a field k we have
dim(k[x1, . . . , xn]) = n, as we think of Spec(k[x1, . . . , xn]) as a thick version of kn,
which (at least as a k-vector space) has dimension n.
Now, if R is Artinian, then in particular dim(R) = 0, and the space Spec(R) is
a finite, disjoint union of points; moreover the topology is discrete, as every point
p ∈ dim(R) is the unique point in V(p) (here we use that all prime ideals are
maximal); that is, every singleton in Spec(R) is a closed subset; using that Spec(R)
is finite, we also have that every singleton is open.
Moreover, our intuition tells us that R should be thought of a ring of “regular
functions” defined on the space Spec(R); we think of “regularity” as a sort of
generalisation of continuity (like smoothness or holomorphicity). If now Spec(R) is
totally disconnected, then we expect that to define a regular function on Spec(R)
we just have to declare its restriction on each singleton of Spec(R), as these form a
cover by disjoint open sets.
Going back to algebra, we expect an Artinian ring R to split as a product of Artinian
rings having a single point in their spectrum. And... our intuition works!

Theorem 9.8. Every Artinian ring factors as a product of Artinian rings.

In order to prove the theorem, we will use the Chinese Reminder Theorem, that we
briefly mention.

Proposition 9.9 (Chinese Reminder Theorem). Let R be a ring and let I1, . . . , In
be ideals in R; assume that for all 1 ≤ i, j ≤ n with i 6= j we have Ii + Ij = R, and
let I =

⋂n
i=1 Ii; consider the canonical projections of rings pi : R/I � R/Ii and let

p be the product ring homomorphism

p : R/I →
n∏
i=1

R/Ii;

then p is an isomorphism.

Proof. We first check that p is injective. If [x]I ∈ ker(p), then [x]Ii = 0, i.e. x ∈ Ii
for all 1 ≤ i ≤ n, and this precisely means that x ∈ I, i.e. [x]I = [0]I .
For surjectivity, for 1 ≤ j ≤ n let ej ∈

∏n
i=1R/Ii be the element whose R/Ij-

component is [1]Ij , and whose R/Ii-component for any i 6= j is [0]Ii ; then the

elements e1, . . . , en generate
∏n
i=1R/Ii as an R-module, so it suffices to prove that

each ej is in the image of p.
For this, fix j and for varying i 6= j let ai, bi ∈ R be such that ai ∈ Ii, bi ∈ Ij
and ai + bi = 1; then the element xj := 1 −

∏
i 6=j ai = (

∏
i 6=j(ai + bi) −

∏
i 6=j ai)

is such that [xj ]Ij = [0], whereas [xj ]Ii = [1]Ii . We conclude by noticing that
p :
∏
i 6=j xi 7→ ej . �

Proof of Theorem 9.8. Let m1, . . .mr be the list of all maximal ideals in R, and let
(0) =

⋂r
i=1 qi be a primary decomposition of (0), with qi being mi-primary. Since

R is Noetherian, for all 1 ≤ i ≤ r there is a power of mi contained in qi; taking the
maximum exponent, we find n ≥ 1 such that mni ⊆ qi for all 1 ≤ i ≤ r. We then
have (0) =

⋂r
i=1 m

n
i is another primary decomposition of (0).
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Now set Ii = mni for 1 ≤ i ≤ r. Then for all i 6= j we have that Ii + Ij is not
contained in any of the maximal ideals (for otherwise there would be a maximal
ideal containing both mi and mj); it follows that Ii + Ij = R. We can thus apply
the Chinese Reminder Theorem, and conclude that R ∼=

∏r
i=1R/m

n
i ; each of the

rings R/mni has a unique prime ideal, hence it is Artinian and local. �

Exercise 9.10. Prove uniqueness in Theorem 9.8: if R is also isomorphic to a

product R ∼=
∏r′

i=1 Si, for some local Artinian rings Si, then r = r′ and up to
permutation of the indices one can find isomorphisms Si ∼= R/mni , such that the

isomorphism R ∼=
∏r′

i=1 Si is nothing but the composite of the isomorphism R ∼=∏r
i=1R/m

n
i followed by the product of the isomorphisms Si ∼= R/mni .

10. Tensor products of modules and algebras

Warning: part of the notes in this section are copied from the lecture notes for the
course “Homological Algebra” that I taught in 2021-2022. All mistakes contained
there (and new ones) are present here.

10.1. Bilinear maps. In this lecture we ask ourselves the following general ques-
tion: given an R-module M , is there a natural way to promote it to an R-algebra?
That is, can we multiply two elements of M? More generally, given two R-modules
M and M ′, can we compute the product m ·m′ for m ∈M and m′ ∈M ′?
A priori, the answer to all of the previous questions is “no”: by definition, if M is
an R-module, the only defined operations are sum and multiplication of an element
of M with an element of the ring R; but given two R-modules M and M ′ and
elements m ∈ M and m′ ∈ M ′, the product m ·m′ just does not make sense (and
it is not even clear where it should lie). However, there are situations, such as the
following, in which a meaningful product is indeed defined.

Example 10.1. As we saw in Example 2.15, if (S, φ) is an R-algebra (i.e., if R and
S are rings and φ : R → S is a ring homomorphism), then we can consider S also
as an R-module. And for the R-module S we can restore the product of S. So S is
an R-module and we have a product map µS : S × S → S.

Example 10.2. Let R be a ring and consider M = R[x] and M ′ = R[y] as R-
modules. Given polynomials P ∈M and Q ∈M ′, the product P ·Q makes perfectly
sense in the bigger polynomial ring R[x, y]. We have in fact multiplication map

µ : R[x]×R[y]→ R[x, y].

Note that the target is a new R-module, different from both M and M ′.

Example 10.3. Let R = Z and consider M = Z/10 and M ′ = Z/20 as Z-modules.
Then we may define a map

µ : M ×M ′ → Z/2, ([m]10, [m
′]20) 7→ [mm′]2.

The previous map is essentially given by projecting both M and M ′ onto Z/2, and
then taking the product in the ring Z/2.
Of course, we could also have projected onto Z/5 instead, or even better onto Z/10
(or even worse, onto the 0 module!).

The previous examples are instances of the following definition.
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Definition 10.4. Let R be a ring and let M , M ′, P be R-modules. An R-bilinear
map

µ : M ×M ′ → P

is a map of sets satisfying the following properties, for all m1,m2 ∈M , m′1,m
′
2 ∈M ′

and r ∈ R:

(1) µ(m1 +m2,m
′
1) = µ(m1,m

′
1) + µ(m2,m

′
1) ∈ P ;

(2) µ(m1,m
′
1 +m′2) = µ(m1,m

′
1) + µ(m1,m

′
2) ∈ P ;

(3) µ(r ·m1,m
′
1) = µ(m1, r ·m′1) = r · µ(m1,m

′
1) ∈ P .

The three properties in the previous definition extrapolate what one usually whishes
from a multiplication in an R-algebra: the first two are a form of distributive law
with respect to the addition; the third is a form of compatibility of the multiplication
µ with the scalar multiplication (multiplication by elements in R).
Given M and M ′, the question becomes: what are the possible choices of P and of
an R-bilinear map µ : M×M ′ → P? Is there a choice which is better than the other
ones? The second part of the question is justified by the trivial example in which
we take P = 0 and µ the constant, zero map: in this case we do get an R-bilinear
map, but it is a quite boring and useless one!
In general, if we want to construct an R-bilinear map µ : M×M ′ → P , we need the
following: for all (m,m′) ∈M ×M ′ we need to identify an element µ(m,m′) ∈ P ;
up to replacing P with a submodule, it does not harm to assume that P is in fact
generated by the set of elements (µ(m,m′))(m,m′)∈M×M ′ . Moreover the relations
(1)-(3) from Definition 10.4 must hold between these elements.
In few words, the tensor product M ⊗RM ′ will be constructed in the most direct
way to have all the previous properties: it is obtained from a free module with basis
the elements (m,m′) of the set M×M , by quotienting the suitable submodule that
guarantees that (1)-(3) hold.

10.2. Definition of tensor products by construction. The following is the
“bad definition” of the tensor product. It is an explicit construction, but it produces
an R-module that, in principle, is difficult to handle with: it has a lot of generators
and a lot of relations. Only after proving Proposition 10.6 we will be able to
understand what makes the tensor product so special.

Definition 10.5. Let M and M ′ be R-modules. We define an R module M ⊗RM ′
as follows. We start with the free module F =

⊕
(m,m′)∈M×M ′ R, and denote

simply by (m,m′) the element of the standard basis of F corresponding to 1 in the
copy of R with index (m,m′). We then consider the submodule N of F generated
by all elements of the following forms, for all m1,m2 ∈M , m′1,m

′
2 ∈M ′ and r ∈ R:

• (m1 +m2,m
′
1)− (m1,m

′
1)− (m2,m

′
1);

• (m1,m
′
1 +m′2)− (m1,m

′
1)− (m1,m

′
2);

• (r ·m1,m
′
1)− r · (m1,m

′
1);

• (m1, r ·m′1)− r · (m1,m
′
1).

Finally, we define M ⊗R M ′ as the quotient R-module F/N . The class of the
generator (m,m′) in F/N is also denoted m⊗m′ ∈M ⊗RM ′.
The map of sets µ⊗ : M ×M ′ →M ⊗RM ′ is defined by µ⊗(m,m′) = m⊗m′, and
it is by construction an R-bilinear map.
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In a sense, Definition 10.5 produces an R-module P which is designed in order to
receive a bilinear map from M ×M ′. The following proposition makes this idea
more precise.

Proposition 10.6. Let µ : M ×M ′ → P be any R-bilinear map, with target any
R-module P . Then there exists a unique R-linear map θ : M ⊗RM ′ → P such that
the following diagram of maps (of sets) commutes:

M ×M ′ M ⊗RM ′

P.

µ⊗

µ
θ

Proof. Since M ⊗M ′ is a quotient F/N , giving an R-linear map θ : F/N → P is

equivalent to giving an R-linear map θ̃ : F → P that vanishes on N : the map θ̃ is

obtained from θ as the composite F � F/N
θ→ P .

If we want the diagram to commute, we must have the equality

θ̃(m,m′) = θ(m⊗m′) = µ(m,m′)

for all (m,m′) ∈ M ×M ′. Thus the map θ̃ is forced on the R-basis of F given by
the elements (m,m′), and we can conclude that there are two possibilities:

• either θ̃ : F → P descends to an R-linear map θ : F/N → P , i.e. it vanishes
on N ;
• or θ̃ does not descend to an R-linear map θ : F/N → P .

In the first case, we would have that θ exists and is unique; in the second case
instead we would have that θ does not exist. Let us rule out the second case.
To prove that θ̃ vanishes on N , it suffices to prove that it vanishes on generators
(1)-(4) of N . Let us compute as example the image of a generator of N of type (3)

along θ̃:

θ̃
(
(r ·m1,m

′
1)− r · (m1,m

′
1)
)

= θ̃(r ·m1,m
′
1)− r · θ̃(m1,m

′
1)

= µ(r ·m1,m
′
1)− r · µ(m1,m

′
1) = 0.

In the first equality we use R-linearity of θ̃ : F → P ; in the second we use the
definition of θ̃, i.e. its evaluation on the basis of F ; in the third we use that
µ : M ×M ′ → P is R-bilinear.
In a similar way one can check that all generators of N are sent to 0 along θ̃. �

10.3. Definition of tensor product by universal property. Motivated by Pro-
position 10.6, we give the following, which is the “good definition” of the tensor
product, by universal property.

Definition 10.7. Let M and M ′ be R-modules. A universal bilinear map for
M × M ′ is the datum of a couple (P̄ , µ̄), where P̄ is an R-module and where
µ̄ : M ×M ′ → P is an R-bilinear map, satisfying the following property (called
universal property): whenever (P, µ) is a (possibly different) couple with P being
an R-module and µ : M ×M ′ → P an R-bilinear map, then there exists a unique
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R-linear map θ : P̄ → P such that the following diagram of maps of sets commutes:

M ×M ′ P̄

P.

µ̄

µ
θ

At first glance, it is not clear why the previous is a definition at all. A priori, such
a wonderful (P̄ , µ̄) could not exist at all! But here Proposition 10.6 helps us: it
tells us that in fact (M ⊗M ′, µ⊗) satisfies the property required for (P̄ , µ̄). On
the other hand, giving a property of an object often does not suffice to define the
object. We have to check that, in fact, the property of (P̄ , µ̄) in Definition 10.7
suffices to determine this couple, at least up to isomorphism.
The argument is as follows. Let (P̄ , µ̄) and (P̌ , µ̌) be two couples satisfying the
property required by Definition 10.7. If you wish, think that (P̄ , µ̄) is the tensor
product from Definition 10.5, and (P̌ , µ̌) is instead obtained in another way.
Since µ̄ : M×M ′ → P̄ is an example of an R-bilinear map with source M×M ′, the
universal property of (P̌ , µ̌) implies that there is a unique R-linear map θ1 : P̌ → P̄
such that the following commutes

M ×M ′ P̌

P̄ .

µ̌

µ̄ θ1

Viceversa, since µ̌ : M ×M ′ → P̌ is R-bilinear, the universal property of the couple
(P̄ , µ̄) implies that there is a unique R-linear map θ2 : P̄ → P̌ such that the following
commutes

M ×M ′ P̄

P̌ .

µ̄

µ̌ θ2

Moreover, since µ̄ : M ×M ′ → P̄ is R-bilinear, the universal property of (P̄ , µ̄)
itself implies that there is a unique R-linear map θ̄ : P̄ → P̄ such that the following
commutes

M ×M ′ P̄

P̄ .

µ̄

µ̄
θ̄

In the last diagram we have two natural candidates for θ̄: one is IdP̄ , and the other
is θ1 ◦ θ2: this second map makes the last diagram commute because we can glue
the two previous diagrams, in which θ1 and θ2 appear.
By uniqueness of θ̄, we get that IdP̄ = θ1 ◦ θ2. Similarly, using the universal
property of (P̌ , µ̌) against µ̌, one obtains that IdP̌ = θ2 ◦ θ1. This means that θ1

and θ2 are inverse R-linear isomorphisms between P̄ and P̌ , and that along these
isomorphisms the bilinear maps µ̄ and µ̌ are identified. In this sense, Definition 10.7
characterises a universal bilinear map out of M ×M ′ up to canonical isomorphism.
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Example 10.8. Let f : M → N and f ′ : M ′ → N ′ be R-linear maps. You can
check that for any R-bilinear map µ1 : N ×N ′ → P the composite map of sets

M ×M ′ N ×N ′ P
f×f ′ µ1

is an R-bilinear map µ2 : M×M ′ → P . This holds in particular when P = N⊗RN ′
and µ1 = µ⊗ : N × N ′ → N ⊗R N ′ is the universal bilinear map of N × N ′.
The universal property of M ⊗R M ′ implies that there is a unique R-linear map
θ : M ⊗RM ′ → N ⊗R N ′ such that the following diagram commutes

M ×M ′ M ⊗RM ′

N ×N ′ N ⊗R N.

µ⊗

f×f ′ θ

µ⊗

The map θ is often denoted as f ⊗R f ′ : M ⊗RM ′ → N ⊗R N ′.

Exercise 10.9. Let RMod � RMod be the category whose objects are couples of
R-modules (M,M ′), and in which a morphism (M,M ′) → (N,N ′) is a couple of
R-linear maps (f, f ′) with f : M → N and f ′ : M ′ → N ′. Start from Example 10.8
and check that there is a well-defined functor ⊗R : RMod×RMod→ RMod sending
the object (M,M ′) 7→M ⊗RM ′ and sending the morphism (f, f ′) 7→ f ⊗R f ′.
In particular, for fixed M , we obtain a restricted functor M⊗R− : RMod→ RMod
sending M ′ 7→ M ⊗R M ′ and (f ′ : M ′ → N ′) 7→ IdM ⊗R f ′. Describe similarly a
restricted functor −⊗RM ′ : RMod→ RMod for fixed M ′.

10.4. Examples and properties of tensor products. In the next examples we
compute explicitly some tensor products. We will use both Definition 10.5 and
Definition 10.7, to show how combining the two leads to very quick arguments of
proof.

Example 10.10. One can sometimes also work with Definition 10.5. For instance,
let m,n ≥ 0 and let’s compute directly Z/m⊗ZZ/n. Each generator [a]m⊗ [b]n can
be written as ab · [1]m⊗ [1]n: this implies in particular that Z/m⊗ZZ/n is generated
over Z by the single element [1]m⊗ [1]n, and is thus of the form Z/l for some l ≥ 0.
What is l? Equivalently, what is the ideal Ann([1]m ⊗ [1]n) ⊆ Z? On the one hand
we have m · [1]m ⊗ [1]n = [m]m ⊗ [1]n = 0 and n · [1]m ⊗ [1]n = ·[1]m ⊗ [n]n = 0,
so that Ann([1]m ⊗ [1]n) ⊇ (m,n) = (d), where d = gcd(m,n) ≥ 0; on the other
hand we have a Z-bilinear map Z/m ⊗Z Z/n → Z/d given by ([a]m, [b]n) 7→ [ab]d,
which is easily seen to be surjective, hence we have a surjective, Z-linear map
Z/m⊗ZZ/n→ Z/d by the universal property. This proves that Z/m⊗ZZ/n ∼= Z/d.

Exercise 10.11. Generalising the previous example, let R be a ring and let I, J
be ideals in R; prove that the map R/I × R/J → R/I + J given by ([a]I , [b]J) 7→
([ab]I+J) is well-defined and R-bilinear. Prove that the induced R-linear map
R/I ⊗R R/J → R/I + J is an isomorphism of R-modules (first, show that the
source is a cyclic R-module, generated by the element [1]I ⊗ [1]J).

Proposition 10.12. Let R be a ring, let (Mi)i∈I be a family of R-modules and let
N be an R-module. Then there is an isomorphism⊕

i∈I
(Mi ⊗R N) ∼=

(⊕
i∈I

Mi

)
⊗R N.
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Proof. Recall that, for a family (M ′j)j∈J , an R-linear map from the direct sum
M ′
⊕

j∈J M
′
j to any R-module P is the same as a family of R-linear maps M ′j → P ,

one for each j ∈ J .
We can define an R-linear map φ :

⊕
i∈I(Mi⊗RN)→

(⊕
i∈IMi

)
⊗RN by declaring

its restrictions φj : Mi⊗RN →
(⊕

i∈IMi

)
⊗RN for all j ∈ I: if ιj : Mj ↪→

⊕
i∈IMi

is the inclusion of the jth direct summand, then we let φj = ιj ⊗R IdN , using
Example 10.8.
We can also define an R-linear map ψ :

(⊕
i∈IMi

)
⊗R N →

⊕
i∈I(Mi ⊗R N) by

declaring an R-bilinear map µ :
(⊕

i∈IMi

)
×N →

⊕
i∈I(Mi⊗RN) as follows: for

a finite linear combination
∑
i∈Imi ∈

(⊕
i∈IMi

)
, with mi ∈ Mi, and for n ∈ N ,

we set µ(
∑
i∈Imi, n) =

∑
i∈Imi ⊗ n).

The two maps φ and ψ are R-linear and are inverse of each other, as can be checked
by evaluating ψ ◦ φ and φ ◦ψ on the generators of the R-modules

⊕
i∈I(Mi⊗RN)

and
(⊕

i∈IMi

)
⊗R N , which are therefore isomorphic. �

Definition 10.13. Let R be a ring, I ⊆ R an ideal and M an R-module; we denote
by IM ⊆M the submodule generated by all elements i ·m with i ∈ I and m ∈M .

Lemma 10.14. In the setting of Definition 10.13 we have an isomorphism of R-
modules R/I ⊗RM ∼= M/IM .

Proof. The map µ : R/I×M →M/IM sending ([a]I ,m) 7→ [am]IM is well-defined
and R-bilinear; it induces therefore an R-linear map φ : R/I ⊗R M → M/IM .
Conversely, we can define a map M → R/I ⊗M by sending m 7→ [1]I ⊗m: this
map is also well-defined and R-linear, and moreover it vanishes on IM ⊆ M , as
for i ∈ I and m ∈ M we have im 7→ [1]I ⊗ am = a[1]I ⊗ m = [a]I ⊗ m =
[0]I ⊗ m = 0[1]I ⊗ m = 0. We get therefore an induced R-linear map from the
quotient ψ : M/IM → R/I ⊗R M . One can then check on generators that both
composites ψ ◦ φ and φ ◦ ψ are the identity. �

Note that Lemma 10.14 specializes to Exercise 10.11 when M = R/J , as R/I + J
can be identified with (R/I)/J(R/I).

Exercise 10.15. Let M,M ′,M ′′ be R-modules.

• Give a definition of R-trilinear map from M ×M ′ ×M ′′ to another R-
module P , similar to Definition 10.4.

• Prove that the map µ̄ : M × M ′ × M ′′ → (M ⊗R M ′) ⊗R M ′′ sending
(m,m′,m′′) 7→ (m ⊗m′) ⊗m′′, and the map µ̌ : M ×M ′ ×M ′′ → M ⊗R
(M ′ ⊗RM ′′) sending (m,m′,m′′) 7→ m⊗ (m′ ⊗m′′), are R-trilinear.

• Prove that both µ̄ and µ̌ have the following universal property: given any
R-trilinear map µ : M ×M ′×M ′′ → P , there is a unique θ̄ : (M ⊗RM ′)⊗R
M ′′ → P such that µ = θ̄◦µ̄, and there is a unique θ̌ : (M⊗RM ′)⊗RM ′′ →
P such that µ = θ̌ ◦ µ̌.

• Deduce that the R-modules (M ⊗R M ′) ⊗R M ′′ and M ⊗R (M ′ ⊗R M ′′)
are canonically isomorphic.

Leveraging on the Exercise 10.15, one often writes M⊗RM ′⊗M ′′ for either (M⊗R
M ′)⊗RM ′′ and M ⊗R (M ′ ⊗RM ′′), or for any R-module receiving a universal R-
trilinear map from M ×M ′ ×M ′′, in the spirit of Definition 10.7.

Exercise 10.16. Let R be a ring and let M,N be R-modules. For any R-module P ,
check that a map µ : M ×N → P is R-bilinear if and only if the map N ×M → P
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sending (n,m) 7→ µ(m,n) is R-bilinear. Deduce that there is an isomorphism
t : M ⊗R N ∼= N ⊗R M , sending m ⊗ n 7→ n ⊗ m, by showing that these two
R-modules have equivalent universal properties.

10.5. Extension of scalars. Recall from the beginning of Section 6 that given
a ring homomorphism f : R → S and an S-module N , we can consider N as an
R-module by restriction of scalars along f : we can write f∗N for this module. In
fact this construction gives a functor f∗ : SMod → RMod. In this subsection we
use the tensor product to transform an R-module into an S-module.
Let M be an R-module, and let f : R→ S as above. Then S can be considered as
an R-module, and we can form the tensor product S ⊗R M , which a priori is an
R-module. We can however define an S-module structure on S ⊗R M by setting
s · (s′ ⊗m) = (ss′)⊗m: check that this is a good definition!
In the light of Exercise 10.15 one can also argue as follows: there is an R-trilinear
map S × S ×M → S ⊗R M given by (s, s′,m) 7→ ss′ ⊗ m, and this induces an
R-linear map S ⊗R S ⊗R M → S ⊗R M which we can then precompose with the
universal R-bilinear map S×(S⊗RM)→ S⊗R(S⊗RM), to obtain a multiplication
by scalars in S for S ⊗RM .

Definition 10.17. We denote by f∗M the S-module S ⊗RM obtained above.

We further observe that if g : M →M ′ is an R-linear map, then IdS⊗Rg : S⊗RM →
S ⊗R M ′ is an S-linear map, since s · (s′ ⊗ m) = (ss′ ⊗ m) is sent to ss ⊗ g(m)
which is precisely s · (s′ ⊗ g(m)). We usually denote by f∗(g) the map IdS ⊗R g.

Exercise 10.18. Prove that there is a functor f∗ : RMod→ SMod sending M 7→
f∗M and g 7→ f∗(g), i.e. check that identities of R-modules are sent to identities of
S-modules, and compositions of R-linear maps are sent to compositions of S-linear
maps. You can see this as an application of Exercise 10.9.

Finally, observe that the R-module structure on S⊗RM can be recovered from the
S-module structure on S⊗RM constructed above by restriction of scalars along f .
As a first application of Definition 10.17, we prove the following lemma, which is
an analogue of Lemma 10.14 with R/I replaced by RT .

Lemma 10.19. Let R be a ring, let T ⊆ R be a multiplicative subset, and M be
an R-module. Then there is an isomorphism of R-modules MT

∼= RT ⊗RM , where
we consider RT as an R-module via the localisation map τ : R→ RT .

Proof. The map µ : RT × M → MT sending (at ,m) 7→ am
t is the composite of

IdRT
× γ : RT ×M → RT ×MT and the scalar product multiplication RT ×MT →

MT (see Definition 6.5); in particular µ is well-defined and R-bilinear, so it induces
an R-linear map φ : RT ⊗RM →MT .
The map M → RT ⊗R M sending m 7→ 1

1 ⊗ m is R-linear and has a T -local R-
module as target: indeed, as explained above, the R-module structure on RT ⊗RM
extends to an RT -module structure. Thus, by Exercise 6.7, there is an induced
R-linear map ψ : MT → RT ⊗RM .
The maps ψ and φ are inverse of each other, as can be checked on generators. �

Exercise 10.20. Prove that if f : M → N is an R-linear map, then the two R-
linear maps IdRT

⊗R f and fT correspond to each other along the identifications
RT ⊗RM ∼= MT and RT ⊗R N ∼= NT considered in the proof of Lemma 10.19.
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We conclude the subsection by the following observation. If f : R → S is a homo-
morphism of rings, and if N is an S-module and M and R-module, then given
an S-linear map g : S ⊗R M → N we can compose it with the R-linear map
M → S ⊗RM sending m 7→ 1⊗m, obtaining an R-linear map M → S. Viceversa,
given an R-linear map h : M → N , we can define an R-bilinear map S ×M → N
by (s,m) 7→ s · h(m), and check that the induced map S ⊗R M → N is in fact
S-linear. The two procedures are inverse of each other, and show that there is a
natural bijection between S-linear maps f∗M → N and R-linear maps M → f∗N .

10.6. Tensor products of algebras. We conclude the section by showing that
the tensor product can give rise not only to new modules, but also to new rings.
We first make an observation: if R is a ring and (S, φ) is an R-algebra, then in
particular we can consider S as an R-module. The multiplication map S × S → S
is R-bilinear, so it gives rise to an R-linear map µ : S ⊗R S → S. The fact that the
product on S is commutative has the following consequence: if T : S⊗RS → S⊗RS
is the map sending s⊗ s′ 7→ s′⊗ s, as in Exercise 10.16, then the following diagram
of R-linear maps commutes

S ⊗R S, S ⊗R S

S.

t

µ µ

Moreover the fact that the product in S is associative implies that the following
diagram of R-linear maps commutes, where we use Exercise 10.15 to make sense of
S ⊗R S ⊗R S

S ⊗R S ⊗R S S ⊗R S

S ⊗R S S.

IdS⊗Rµ

µ⊗RIdS µ

µ

Finally, the fact that φ : R → S is a ring homomorphism implies that φ is an R-
linear map, and that the following diagram of R-linear maps commutes, where we
identify R⊗R S ∼= S via 1⊗ s 7→ s.

R⊗R S S ⊗R S

S.

φ⊗RIdS

µ

Exercise 10.21. Give the opposite construction: given an R-module S with R-
linear maps ψ : R→ S and µ : S⊗RS → S making all the above diagrams commute,
construct a R-algebra structure on S.

Let now (S, φ, µ) and (S′, φ′, µ′) be R-algebras, presented as in Exercise 10.21 Then
the R-module S ⊗R S′ can be given an R-algebra structure by considering

• the map φ′′ : R → S ⊗R S′ given as the composite of the identification
R ∼= R⊗R R, sending 1 7→ 1⊗ 1, and ψ ⊗R ψ′;
• the map µ′′ : S ⊗R S′ ⊗R S ⊗R S′ → S ⊗R S′ given as the composite of

IdS ⊗R t ⊗R IdS′ , with t : S′ ⊗R S → S ⊗R S′ as in Exercise 10.16, and
µ⊗R µ′
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In simple terms, the product on S ⊗R S′ is defined on simple tensors by setting
(a ⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′, and extended R-bilinearly; the ring homomorphism
ψ′′ : R→ S ⊗R S′ is defined by ψ′′(a) = ψ(a)⊗ 1 = 1⊗ ψ′(a).
We observe moreover that there is an R-algebra homomorphism ι : S → S ⊗R S′
given by setting ι(a) = a ⊗ 1; similarly we have a homomorphism of R-algebras
ι′ : S′ → S ⊗R S′ sending a′ 7→ 1 ⊗ a′; so S ⊗R S′ is an example of an R-algebra
receiving a map of R-algebras both from S and from S′. The following proposition
characterises it as the “initial” example of such an R-algebra.

Proposition 10.22. Let R be a ring, let S, S′ and S′′ be R-algebras, and let
f : S → S′′ and f ′ : S′ → S′′ be R-algebra homomorphisms. Then there is a unique
homomorphism of R-algebras θ : S ⊗R S′ → S′′ such that f = θ ◦ ι and f ′ = θ ◦ ι′.

Proof. The algebra S ⊗R S′ is generated as an R-module by the elements a ⊗ a′.
Each such element can be factored as a product (a ⊗ 1) · (1 ⊗ a′). Each element
a⊗ 1 is in the image of ι, and each element 1⊗ a′ is in the image of ι′: hence there
can be at most one R-algebra homomorphism θ with the required properties.
In fact, one can define an R-bilinear map S × S′ → S′′ by sending (a, a′) 7→
f(a) · f ′(a′). The induced R-linear map θ : S ⊗R S′ → S′′ is easily shown to be a
ring homomorphism (hence a homomorphism of R-algebras). �

Example 10.23. Recall Example 10.2; then the algebra R[x]⊗RR[y] can be iden-
tified with the polynomial algebra R[x, y].
Recall Exercise 10.11; then the constructed bijection R/I⊗RR/J ∼= R/I+J is not
only an isomorphism of R-modules, but also an isomorphism of R-algebras.

11. Flatness

Recall from 10.9 that given a ring R and two R-modules M and N , we have intro-
duced a new R-module M ⊗R N . In fact, if we fix M , we can consider M ⊗R − as
a functor RMod → RMod, sending N 7→ M ⊗R N and sending an R-linear map
f : N → N ′ to the R-linear map IdM ⊗R f : M ⊗R N →M ⊗R N ′. As a particular
case, discussed in Exercise 10.18, when M = S is an R-algebra, then S ⊗R − can
be regarded/upgraded to a functor RMod→ SMod.

11.1. Additive and exact functors. By Proposition 10.12, the functor M ⊗R −
sends a direct sum N ⊕N ′ of R-modules to the R-module M ⊗R (N ⊕N ′), which
can be identified with the direct sum M ⊗R N ⊕M ⊗R N ′. Similarly, for S an
R-algebra, the functor S ⊗R − : RMod → SMod sends the R-module N ⊕ N ′ to
the direct sum of S-modules S ⊗R N ⊕ S ⊗R N ′.

Definition 11.1. Let R,S be two rings and let F : RMod → SMod be a functor.
We say that F is additive if it sends finite direct sums to finite direct sums. More
precisely: for every M1,M2 ∈ RMod we have inclusions ι1 : M1 → M1 ⊕M2 and
ι2 : M2 →M1⊕M2, and the requirement is that F (ι1) and F (ι2) are inclusions and
exhibit F (M1 ⊕M2) as the direct sum of F (M1) and F (M2).

Example 11.2. Let M,M ′ be R-modules. Recall that given two R-linear maps
f, g : M →M ′, the pointwise sum f+g : M →M ′ is again an R-linear map. If F is
any functor F : RMod → SMod, then F (f), F (g) and F (f + g) are three S-linear
maps F (M) → F (M ′), however in general F (f + g) 6= F (f) + F (g): for example
consider the constant functor sending every R-module M to the S-module S, and
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sending every R-linear map f to IdS . Notice that this functor is not additive, as
S ⊕ S 6= S (at least if S is not the zero ring...).
However, if F : RMod → SMod is additive, then indeed we have F (f + g) =
F (f) + F (g). To see this, first notice that, taking M1 = M and M2 = 0 (the zero
R-module) in Definition 11.1, we have that ι1 : M → M ⊕ 0 is an isomorphism,
hence F (ι1) : F (M)→ F (M)⊕F (0) must also be an isomorphism (a functor sends
isomorphisms to isomorphisms), implying that F (0) = 0 is the zero S-module.
Second, we notice that there is a unique map ∇M : M ⊕M → M such that both
composites ∇◦ ι1 and ∇◦ ι2 are equal to IdM : in fact, ∇M is the map sending each
copy of M identically to M . If we apply F , we obtain that F (∇) : F (M ⊕M) →
F (M) has the characterising property for being∇F (M), up to identifying F (M⊕M)
with F (M)⊕ F (M) as in Definition 11.1.
Finally, we can characterise f + g : M → M ′ as the unique map h : M → M ′ such
that h ◦∇ ◦ ι1 = f and h ◦∇ ◦ ι2 = g; applying F we obtain that F (f + g) has the
characterising property for being F (f) + F (g).

The above discussion shows that for an R-module M the functor M⊗R− : RMod→
RMod is additive. Similarly, for any R-algebra S, the functor S ⊗R − : RMod →
SMod is additive.
Among additive functors, thos that are easiest to work with are the exact ones, i.e.
the functors that send short exact sequences to short exact sequences. In general
the functor M ⊗R − is not exact, but it is always right exact, in the sense of the
following definition.

Definition 11.3. Let R,S be rings and let F : RMod → SMod be an additive
functor. We say that F is:

• exact, if whenever 0 → M
f
↪→ N

g
� P → 0 is a short exact sequence in

RMod, then 0→ F (M)
F (f)
↪→ F (N)

F (g)
� F (P )→ 0 is a short exact sequence

in SMod;

• right exact, if whenever M
f→ N

g
� P → 0 is exact in RMod, then

F (M)
F (f)→ F (N)

F (g)
� F (P )→ 0 is exact in SMod;

• left exact, if whenever 0 → M
f
↪→ N

g→ P is exact in RMod, then 0 →
F (M)

F (f)
↪→ F (N)

F (g)→ F (P ) is exact in SMod.

Example 11.4. If R is a ring and T ⊆ R is a multiplicative subset, then the
functor −T : RMod→ RTMod is exact, as proved in Proposition 6.9.
A much simpler example of an exact functor is the following: if f : R → S is a
ring homomorphism, then by restriction of scalars we have a functor f∗ : SMod→
RMod; now given a short exact sequence 0→M

f
↪→ N

g
� P → 0 of R-module, the

kernels and the images of the maps involved will not change if we consider M,N,P
as R-modules: hence f∗ is an exact functor.
In fact, given any additive functor F : RMod→ SMod, we can consider the functor
η∗ : SMod → ZMod induced by the unique ring homomorphism η : Z → S; then
F is exact if and only if η∗ ◦ F is exact. This is because exactness of a sequence
of S-modules and S-linear map is a property of the underlying sequence of abelian
groups and abelian group homomorphisms.
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Example 11.5. Let R = Z and consider the functor Z/2 ⊗Z − : ZMod → ZMod.

Then the short exact sequence 0 → Z ·2→ Z [−]2→ Z/2 → 0 is sent along the functor
to the sequence of Z-modules and Z-linear maps

0→ Z/2⊗Z Z Z/2⊗Z Z Z/2⊗Z Z/2→ 0,
IdZ/2⊗Z(·2) IdZ/2⊗Z[−]2

which can be identified (little exercise!) with the sequence

0→ Z/2 ·0→ Z/2 Id→ Z/2→ 0.

Notice that in the previous sequence the composite of any two consecutive maps
is zero: this is because Z/2 ⊗Z − is an additive functor (think of Example 11.2).
Notice also that the last sequence is not exact: the map ·0 has kernel equal to Z/2,
but the previous map 0→ Z/2 has trivial image. However, exactness holds at the
other two places where it can be checked, namely the middle and the right copy of
Z/2.

Lemma 11.6. Let R be a ring and let M be an R-module. Then the functor
M ⊗R − : RMod→ RMod is right exact.

Proof. Let N
f→ N ′

g
� N ′′ → 0 be an exact sequence of R-modules and R-linear

maps. We want to check that also the sequence

M ⊗R N M ⊗R N ′ M ⊗R N ′′ → 0
IdM⊗Rf IdM⊗Rg

is exact; that is, it is exact at M ⊗R N ′′ and at M ⊗R N ′.
For exactness at M ⊗RN ′′ we need to check that IdM ⊗R g is a surjective map, and
to do so it suffices to show that each generator m⊗ n′′ ∈M ⊗RN ′′ is in the image
of this map; by surjectivity of g : N ′ → N ′′ we can find n′ ∈ N ′ with g(n′) = n′′,
and thus IdM ⊗R g sends m⊗ n′ 7→ m⊗ n′′ as desired.
The fact thatM⊗R− is an additive functor implies that Im(IdM⊗Rf) ⊆ ker(IdM⊗R
g), as this inclusion is equivalent to the equality (IdM ⊗R g) ◦ (IdM ⊗R f) = 0, and
indeed IdM ⊗R (g ◦ f) = 0. To prove that Im(IdM ⊗R f) = ker(IdM ⊗R g), we can
equivalently prove that the map

IdM ⊗R f : M ⊗R N ′/Im(IdM ⊗R f)→M ⊗R N ′′

induced by IdM ⊗R g is in bijective (we already know it is surjective). We will do it
by constructing an inverse map φ : M ⊗RN ′′ →M ⊗RN ′/Im(IdM ⊗R f). For this,
we start with the R-bilinear map µ : M ×N ′ →M ⊗R N ′/Im(IdM ⊗R f) obtained
as the composite of the universal R-bilinear map M × N ′ → M ⊗R N ′ and the
projection to the quotient (which is an R-linear map).
By construction, we have that µ(m,n′) = 0 whenever n′ ∈ Im(f); this implies
that µ factors as the composite of the map of sets M × N ′ → M × N ′/Im(f)
and some R-bilinear map µ̄ : M × N ′/Im(f) → M ⊗R N ′/Im(IdM ⊗R f). Notice
also that N ′/Im(f) ∼= N ′′, so we can consider µ as an R-bilinear map M ×N ′′ →
M ⊗R N ′/Im(IdM ⊗R f).
And now we apply the universal property of M ⊗R N ′′, to obtain an R-linear map
φ : M ⊗R N ′′ → M ⊗R N ′/Im(IdM ⊗R f). One readily checks that IdM ⊗R f and
φ are inverse of each other. �
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11.2. Flatness. Even if there are examples as 11.5, one can still hope that for some
R-modules M the functor M ⊗R − : RMod→ RMod is exact.

Example 11.7. The R-module R has the property that R⊗RN ∼= N in a natural
way, by identifying 1⊗ n with n. The word “natural” refers to the fact that along
these identifications, an R-linear map f : N → N ′ corresponds precisely to the
R-linear map IdR ⊗R f : R⊗RN → R⊗RN ′, i.e. the following diagram commutes

R⊗R N N

R⊗R N ′ N ′.

∼=

IdR⊗Rf f

∼=

It follows that the entire functor R ⊗R − : RMod → RMod can be identified with
(one says, is naturally isomorphic to) the identity functor of RMod, which is defi-
nitely an exact functor. So R⊗R − is an exact functor.
Proposition 6.9, together with Lemma 10.19, implies that for any multiplicative
subset T ⊆ R the functor RT ⊗R − : RMod → RTMod is naturally isomorphic to
the functor −T : RMod→ RTMod, which is an exact functor.

Definition 11.8. Let R be a ring and M be an R-module. We say that M is flat
(over R) if the functor M ⊗R − : RMod→ RMod is exact.
An ring homomorphism f : R→ S is flat if S, considered as an R-module, is flat.

Example 11.7 shows that R and RT are flat R-modules; since the module structures
come from ring homomorphism, we have that IdR and τ : R → RT are flat ring
homomorphisms.

Example 11.9. Observe that proposition 10.12, together with the fact that arbi-
trary direct sums of short exact sequences are short exact sequences, implies that
if (Mi)i∈I is a family of flat R-modules, then also the direct sum

⊕
i∈IMi is flat.

In particular, every module of the form
⊕

i∈I R (such a module is called a free
R-module) is flat. And if R is a field, then every vector space is free, and hence
flat.

Example 11.10. Let f : R → S be a ring homomorphism and let M be an S-
module. If S is flat over S, the R-module f∗M obtained by restriction of scalars
may not be flat. For example, consider the map of rings Z � Z/2: then every Z/2-
vector space is flat, but as we saw in Example 11.5 Z/2 is not flat as a Z-module.
Similarly, if f∗M is flat over R, then M may not be flat over S. For example,
consider the inclusion of rings k ↪→ k[x], where k is a field. Then the k[x]-module

k[x]/(x) is not flat over k[x] (think of the short exact sequence k[x]
·x→ k[x] �

k[x]/(x) and prove this as an exercise!), but k[x]/(x), as a k-vector space, is flat.

In general, every short exact sequence of R-modules arises from an injective R-linear
map f : N → N ′ by defining g : N ′ → N ′′ := N ′/N to be the projection to the

quotient, and then considering 0→ N ′
f→ N ′

g→ N ′′ → 0. Since for every R-module
M the functor M ⊗R − sends the short exact sequence 0 → N → N ′ → N ′′ → 0
to a sequence 0→M ⊗R N →M ⊗R N ′ →M ⊗R N ′′ → 0 which is at least exact
at M ⊗RN ′ and at M ⊗RN ′′ (by Lemma 11.6), checking whether M is flat or not
is equivalent to checking whether every injective R-linear map f : N → N ′ gives
again rise to an injective R-linear map IdM ⊗ f : M ⊗R N →M ⊗R N ′.
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11.3. Faithful flatness. We observe that the zero R-module 0 is flat, as the zero
functor 0: RMod → RMod sends any sequence to an exact sequence. Now, as
discussed in Subsection 6.3 when dealing with localisation, functors as M ⊗R −
can help us transforming a problem about R-modules into a problem about simpler
R-modules; exactness of M ⊗R − can be used to translate good hypotheses of the
original problem into good hypotheses for the simplified version; but at some point
we want to be able to come back to the original problem. In this respect, the zero
functor is quite useless. In general, we would be happy if M⊗R− detects differences
and equalities between R-modules.

Definition 11.11. Let R be a ring and M be an R-module. We say that M is
faithfully flat if M is flat and for every non-zero R-module N we have that M⊗RN
is also non-zero.
Given a ring homomorphism f : R → S, we say that f is faithfully flat if S is
faithfully flat as an R-module.

Example 11.12. Let k be a field; then every non-zero vector space V is faithfully
flat: indeed if V ∼=

⊕
i∈I k, for a non-empty set I, then for each other vector space

W 6= 0 we have V ⊗k W ∼=
⊕

i∈IW , using Proposition 10.12, and the last direct
sum is again a non-trivial vector space.
In general, if R is a ring and M is a non-zero, free R-module, then M is faithfully
flat. This implies for instance that if S = R[x1, . . . , xn], then S is a free R-module,
with basis given by the monomials, and thus the inclusion of rings R ↪→ S is a
faithfully flat ring homomorphism.

Example 11.13. Let R be a ring; then the module M =
⊕

mRm, where the
direct sum is taken over all maximal ideals of R, is faithfully flat: this is a direct
consequence of Proposition 6.10.

Example 11.14. In general not every flat module is faithfully flat. For instance,
observe that Q is a flat Z-module (it is the localisation of Z at the prime ideal (0)),
but it is not faithfully flat. To show this, we claim that Q⊗Z Z/n = 0 for all n ≥ 2:
indeed any generator a

b ⊗ [c]n can be identified with zero via

a

b
⊗ [c]n = n · a

nb
⊗ [c]n =

a

nb
⊗ (n · [c]n) =

a

nb
⊗ [0]n = 0.

Exercise 11.15. Let R be a ring and assume that there are at least two distinct
maximal ideals m,m′. Prove that Rm is not faithfully flat, though it is flat. (Hint:
think of R/m′.)

The following proposition gives a characterisation of faithfully flat modules.

Proposition 11.16. Let R be a ring and M be a flat R-module. Then the following
are equivalent:

(1) M is faithfully flat in the sense of Definition 11.11;
(2) for all non-zero R-linear maps f : N → N ′, also IdM ⊗R f : M ⊗R N →

M ⊗R N ′ is non-zero;

(3) for all sequences N
f→ N ′

g→ N ′′ of three R-modules and two R-linear maps,

if M ⊗R N
IdM⊗Rf→ M ⊗R N ′

IdM⊗Rg→ M ⊗R N ′′ is exact at M ⊗R N ′, then

also N
f→ N ′

g→ N ′′ is exact at N ′;
(4) for every maximal ideal m ⊂ R we have mM 6= M .



COMALG 2023 73

Proof. (1)⇒ (2). Let f : N → N ′ be a non-zero R-linear map. Then we can factor
f as a composition of a surjection s : N � Im(f) and an injection i : Im(f) ↪→ N .
We have that IdM ⊗R s : M ⊗RN →M ⊗R Im(f) is surjective by Lemma 11.6, and
since M is flat we also have that IdM ⊗R i is injective. Finally, the assumption on f
tells us that Im(f) is a non-zero R-module, and since M is assumed faithfully flat
we obtain that also M ⊗R Im(f) is non-zero; it follows that IdM ⊗R f is a non-zero
map, as its image contains the image of M ⊗R Im(f) along Id(M)⊗R i.
(2)⇒ (3). The composition g ◦ f is the zero map, as witnessed by the fact that the
composition IdM⊗R(g◦f) = (IdM◦Rg)◦(IdM⊗Rf) is the zero map. Moreover, using

that M is flat, we obtain that the exact sequence N
f→ N ′

π
� N ′/Im(f)→ 0 gives

rise to an exact sequence M⊗RN
IdM⊗Rf→ M⊗RN ′

IdM⊗Rπ
� M⊗R (N ′/Im(f))→ 0;

so we can identify M ⊗R (N ′/Im(f)) with the quotient M ⊗R N ′/Im(IdM ⊗R f).

Similarly, the exact sequence 0 → ker(g)
ι
↪→ N ′

g→ N ′′ leads to the exact sequence

0 → M ⊗R ker(g)
IdM⊗Rι
↪→ M ⊗R N ′

IdM⊗Rg→ M ⊗R N ′′, and therefore we can
identify M ⊗R ker(g) with ker(IdM ⊗R g). By hypothesis we have ker(IdM ⊗R g) =
Im(IdM ⊗R f) as submodules of M ⊗R N ′; using the previous identifications, we
obtain that the composite map

M ⊗R ker(g) M ⊗R N ′ M ⊗R (N ′/Im(f))
IdM⊗Rι IdM⊗Rπ

can be identified with the composite map, which obviously vanishes

ker(IdM ⊗R g) = Im(IdM ⊗R f) M ⊗R N ′ M ⊗R N ′/Im(IdM ⊗R f).

This shows that IdM ⊗R (π ◦ ι) is zero, and by assumption this implies that π ◦
ι : ker(g)→ N ′/Im(f) is zero as well.

(3)⇒ (4). Let m ⊂ R be a maximal ideal, and denote by i : m → R the inclusion,

which is injective but not surjective. Then the sequence m
i→ R → 0 is not exact

at R, so after tensoring with M we must get a non-exact sequence M ⊗R m
IdM⊗Ri→

M ⊗R R → 0. After identifying M ⊗R R ∼= M in the usual way, the image of
IdM ⊗R i is generated by the elements am ∈ M with a ∈ m and m ∈ M ; in other
words, the image corresponds to the submodule mM ⊆ M , and by non-exactness
we must have mM 6= M .

(4)⇒ (1). Let N be a non-zero R-module, and let n ∈ N be a non-zero element.
Then the injective map SpanR(n) ↪→ N given by the inclusion is sent after tensoring
with the flat R-module M to an injective map M ⊗R SpanR(n) ↪→ M ⊗R N , so
if we prove that M ⊗R SpanR(n) 6= 0 we also have that M ⊗R N 6= 0, as desired.
The module SpanR(n) is cyclic, so for some ideal I ⊆ R we have SpanR(n) ∼= R/I;
moreover, if m is a maximal ideal containing I, we have a surjection SpanR(n) ∼=
R/I � R/m, which after tensoring with M becomes a surjection M⊗RSpanR(n) �
M ⊗RR/m, so it suffices to prove that M ⊗RR/m is non-zero. Using again that M
is flat, we have that the short exact sequence 0 → m → R → R/m → 0 gives rise
to a short exact sequence 0→M ⊗R m→M ⊗R R→M ⊗R R/m→ 0; the image
of the injective map M ⊗Rm→M ⊗R R is the submodule mM ⊆M if we identify
M ⊗R R ∼= M as usual. By hypothesis, this is not the entire M , so by exactness
we have M ⊗R R/m 6= 0 as desired. �
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12. Flatness and localisations

Let R be a ring, let M be an R-module and let T ⊆ R be a multiplicative subset. By
Lemma 10.19 the R-module MT can be identified with the tensor product M⊗RRT ,
and an application of exercise 10.15 is that the functor (M ⊗RRT )⊗R− : RMod→
RMod can be identified with the composite functor (M ⊗R−) ◦ (RT ⊗R−); if M is
flat over R, then both functors in the composition preserve exact sequences, hence
the composite does: this shows that if M is a flat R-module, then MT is also a flat
R-module.

Exercise 12.1. More generally, prove that if M,M ′ are flat R-modules, then M⊗R
M ′ is also a flatR-module; and ifM,M ′ are faithfully flatR-modules, thenM⊗RM ′
is also a faithfully flat R-module.

As observed in Example 11.14, Q = Z(0) is flat but not faithfully flat as a Z-module,
even if it is a localisation of Z which is faithfully flat as a Z-module. So in general,
even if M is faithfully flat over R, MT may only be flat over R.

12.1. Tensor product “commutes” with localisation.

Lemma 12.2. Let R be a ring, let T ⊆ R be a multiplicative subset, let M,M ′, P
be RT -modules and let µ : M ×M ′ → P be a map of sets; then µ is R-bilinear if
and only if it is RT -bilinear.

Proof. If µ is RT -bilinear, then it is also R-bilinear: this is an instance of the more
general fact that if f : R → S is a ring homomorphism and µ : M ×M ′ → P is an
S-bilinear map, with M,M ′, P being S-modules, then the same map µ, considered
as a map f∗M × f∗M ′ → f∗P , is R-bilinear.
Viceversa, suppose that µ is R-bilinear. We have to check that for a

t ∈ RT , for
m ∈ M and for m′ ∈ M ′ we have in P the equality µ(atm,m

′) = µ(m, atm
′) =

a
t µ(m,m′). Since multiplication by t is invertible, it suffices to check in P the
equality tµ(atm,m

′) = tµ(m, atm
′) = aµ(m,m′); and now we can use that µ is R-

bilinear and replace tµ(atm,m
′) = µ(tatm,m

′) and tµ(m, atm
′) = µ(m, tatm

′), thus
reducing ourselves to checking that µ(am,m′) = µ(m, am′) = aµ(m,m′), which
again is true because µ is R-bilinear. �

Lemma 12.3. Let R be a ring, T ⊆ R a multiplicative subset, and let M,N be
R-modules. If either M or N (or both) are T -local, then also M ⊗R N is T -local

Proof. Suppose that M is T -local; then for t ∈ T the map t · − : M →M is an R-
linear isomorphism. Since −⊗RN is a functor, it follows that (t ·−)⊗R IdN : M⊗R
N → M ⊗R N is also an isomorphism, and the latter map can be identified with
t · − : M ⊗R N →M ⊗R N . �

A straightforward corollary of Lemmas 12.2 and 12.3 is the following.

Corollary 12.4. Let R be a ring, T ⊆ R a multiplicative subset, and M,M ′ be RT -
modules; then there is an isomorphism of T -local R-modules M⊗RM ′ ∼= M⊗RT

M ′.

Proof. We check that M ⊗R M ′ satisfies the universal property characterising
M ⊗RT

M ′. First, by Lemma 12.3 we have that M ⊗R M ′ is T -local, so we can
consider it as an RT -module; moreover µR⊗ : M ×M ′ →M ⊗RM ′ is R-bilinear, so
by Lemma 12.2 it is also RT -bilinear.
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Let now µ : M ×M ′ → P be an RT -bilinear map, with P some RT -module. Then
µ is also R-bilinear by Lemma 12.2, so by the universal property of M ⊗R N there
is a unique R-linear map θ : M ⊗R N → P such that θ ◦ µR⊗ = µ; the map θ is an
R-linear map between RT -modules, so it is RT -linear. �

Proposition 12.5. Let R be a ring, T ⊆ R a multiplicative subset and M be an R-
module. Then for any RT -module N there is a natural isomorphism of R-modules
M ⊗R N ∼= MT ⊗R N ∼= MT ⊗RT

N . In particular:

(1) If M is flat over R, then MT is flat over RT ;
(2) If M is faithfully flat over R, then MT is faithfully flat over RT ;

Proof. The isomorphism MT ⊗R N ∼= MT ⊗RT
N follows from Corollary 12.4. For

the first isomorphism, observe that the map M×N →MT ⊗RT
N sending (m,n) 7→

m
1 ⊗ n is R-bilinear, so it gives rise to an R-linear map φ : M ⊗R N →MT ⊗RT

N .

Viceversa, the map MT ×N →M ⊗RN sending (mt , n) 7→ m⊗ 1
t ·n is R-linear, so

it induces an R-linear map ψ : MT ⊗RN →M ⊗RN . One can check on generators
that φ and ψ are inverse isomorphisms.
By Lemma 12.3, we can consider M ⊗R −, MT ⊗R − and MT ⊗RT

− as functors
RTMod→ RTMod, and the previous argument, which is natural in N , shows that
these functors are isomorphic to each other; in particular, if the first functor is exact,
so is the third. If M is flat over R, then the functor M ⊗R − : RTMod→ RTMod
can be regarded as the restriction of M ⊗R − : RMod→ RMod to the subcategory
of RMod consisting of all T -local R-modules and all R-linear maps between them.
This concludes the proof of (1).
If M is moreover faithfully flat over R, then for any non-zero RT -module N (which
is in particular a non-zero R-module) we have that M ⊗R N is also non-zero; the
above isomorphism then tells us that also MT ⊗RT

N is non-zero, and this proves
(2). �

12.2. Characterisation of faithfully flat ring homomorphisms. The previous
discussion can be applied to prove the following theorem, characterising faithfully
flat homomorphisms of rings among the flat ones.

Theorem 12.6. Let φ : R→ S be a flat homomorphism of rings. Then the follow-
ing are equivalent:

(1) φ is faithfully flat, in the sense of Definition 11.11;
(2) every maximal ideal m ⊂ R is of the form φ−1(n) for some maximal ideal

n ⊂ S;
(3) the map Spec(φ) : Spec(S)→ Spec(R) is surjective.

Proof. (1)⇒ (3). Let p ∈ Spec(R) be a prime ideal, and let T := R \ p. The
T -localisation of S as an R-module can be identified with the localisation of S at
the multiplicative subset φ(T ) ⊆ S, and we get a ring homomorphism φT : RT →
ST := Sφ(T ). Since we assume that φ is faithfully flat, we have by Proposition 12.5
that also the ring homomorphism φT is faithfully flat. Consider now the unique
maximal ideal m ⊂ RT (which is the extension of p along the localisation map
R→ RT ). Then by Proposition 11.16 we have that mST 6= ST , as ST is a faithfully
flat RT -module; we can in fact identify mST with the ideal me := (φT (m)) ⊂ ST ,
i.e. the extension along φT of m. It follows that, since me ⊂ ST is a proper ideal,
it is contained in some maximal ideal n ⊂ ST ; the contraction nc := φ−1(n) is a
prime ideal of RT containing m, and since m is maximal it must be the entire m.
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The contraction of n along the localisation map S → ST is some prime ideal q ⊂ S,
whose contraction along φ must be p.

(3)⇒ (2). If Spec(φ) is surjective, in particular for every maximal ideal m ⊂ R
there is a prime ideal q ⊂ S such that φ−1(S) = m. We can extend q to a maximal
ideal n ⊂ S; the contraction φ−1(S) is a prime ideal of R that contains m, so it has
to be m.

(2)⇒ (1). Using Proposition 11.16, we have to prove that for each maximal ideal
m ⊂ R the sub-R-module mS is different from the entire S. If n ⊂ S is a maximal
ideal such that φ−1(n) = m, we have that mS ⊆ n, and thus mS 6= S. �

Example 12.7. In general a ring homomorphism φ : R→ S inducing a surjective
map Spec(S)→ Spec(R) need not be flat. For instance, consider the ring homomor-
phism k[x]/(x2) � k[x]/(x) ∼= k, for k a field: it induces a bijection between spectra
(both consisting of a single point), but k[x]/(x) is not a flat k[x]/(x2)-module, as
for instance the k[x]/(x2)-linear map k[x]/(x) → k[x]/(x2) sending [1]x 7→ [x]x2 is
injective, yet after tensoring with k[x]/(x) over k[x]/(x2) we obtain a map that can

be identified with the zero map k[x]/(x)
0→ k[x]/(x), in particular a non-injective

map.

We conclude by reading Example 11.14 in the light of Theorem 12.6: the ring
homomorphism Z → Q makes Q into a flat Z-module; however the induced map
Spec(Q)→ Spec(Z) is not surjective, as Spec(Q) consists of a single point, hitting
the point (0) ∈ Spec(Z), and every other point (p) ∈ Spec(Z) is not in the image.

12.3. Detecting flatness. Proposition 12.5 tells us that flatness is preserved after
localisation: if M is a flat R-module, then for any multiplicative subset T ⊆ R we
have that MT is a flat RT -module (it is also a flat R-module, and proving this is
an application of Exercise 12.1). We are now interested in the converse statement:
if enough localisations MT of an R-module M are flat, can we conclude that M
is flat (over R)? In asking that MT is flat “for enough T”, we have a priori to
specify whether we want MT to be flat over R or over RT . Fortunately these two
requirements are equivalent, as the following corollary of Proposition 12.5 shows.

Corollary 12.8. Let R be a ring, T ⊆ R a multiplicative subset and N an RT -
module. Then N is flat over R if and only if it is flat over RT .

Proof. If N is flat over R, then N ∼= NT is flat over RT by Proposition 12.5.
Viceversa, if N is flat over RT , then again by Proposition 12.5 the functor −⊗RN
can be regarded as the composite functor (−)T ⊗RT

N , so it is a composition of
exact functors and hence exact. �

In the spirit of Proposition 6.10, we would like a statement of the form “an R-
module is flat if and only if each localisation Rm at a maximal ideal is flat”. The
following proposition generalises a bit this statement.

Proposition 12.9. Let φ : R → S be a ring homomorphism and let M be an
S-module. Then the following statements are equivalent.

(1) The R-module φ∗M is flat.
(2) For every maximal ideal n ⊂ S, the R-module φ∗(Mn) is flat.

We observe that condition (2) in Proposition 12.9 can be rephrased as follows,
thanks to Corollary 12.4: for every maximal ideal n ⊂ S, denoting p = φ−1(n) ∈
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Spec(R), we have that the R-module φ∗(Mn) is R \ m-local, so we can consider it
as a Rp-module; we can then ask that φ∗(Mn) be flat over Rp.
We also observe that, taking R = S and φ = IdR, Proposition 12.9 tells us that an
R-module M is flat if and only Rm is flat for every maximal ideal m ⊂ R.
To prove Proposition 12.9 it is convenient to consider triple tensor products of the
form N ⊗R M ⊗S P , where N is an R-module and M,P are S-modules (so M is
also an R-module, as it is identified with f∗M). The following exercise makes this
idea precise.

Exercise 12.10. Let φ : R → S be a ring homomorphism and let M be an S-
module. For an R-module N , consider the tensor product N ⊗R φ∗M : for every
a ∈ S, the map s ·− : M = φ∗M →M = φ∗M is R-linear, so it induces an R-linear
map IdN ⊗R (s · −) : N ⊗R φ∗M → N ⊗R φ∗M .

• Prove that the maps IdN ⊗R (s · −), for varying s ∈ S, assemble into an
S-module structure on N ⊗R φ∗M .
• Prove that if f : M → M ′ is an S-linear map, then the map IdN ⊗R f

(constructed using that f is also R-linear φ∗RM → φ∗M
′) is S-linear.

• Prove that N ⊗R φ∗(−) can be made into a functor SMod→ SMod.
• Prove that in fact the entire construction is also natural in N : if g : N →
N ′ is an R-linear map and f : M → M ′ is S-linear, we get that g ⊗R
f : N ⊗R φ∗M → N ′ ⊗R φ∗M

′ is S-linear. So we really get a functor
−⊗R φ∗(−) : RMod�SMod→ SMod. We often leave φ∗ implicit and just
write −⊗R − for this functor.
• Prove that if M and P are two S-modules and N is an R-module, there

is a “natural” isomorphism of S-modules between N ⊗R (M ⊗S P ) and
(N ⊗RM)⊗S P ; that is, prove that the two functors −⊗R (−⊗S −) and
(− ⊗R −) ⊗S −, from RMod � SMod � SMod to SMod, are naturally
isomorphic.

Proof of Proposition 12.9. (1)⇒ (2). Let n be a maximal ideal in S. We can iden-
tify Mn with the tensor product M ⊗S Sn. By Exercise 12.10 we can express the
functor −⊗RMn as (−⊗RM)⊗S Sn, that is, as the composition of the two func-
tors −⊗RM : RMod→ SMod, and −⊗S Sn : SMod→ SMod. The first functor is
exact by hypothesis on M (here we use that exactness is a property of a sequence
of modules that can be checked on the underlying sequence of abelian groups); the
second is exact by Example 11.7.

(2)⇒ (1). Let i : N ↪→ N ′ be an injective R-linear map. By Exercise 12.10, the
induced map i ⊗R IdM is an S-linear map between the S-modules N ⊗R M →
N ′⊗RM ; if i⊗R IdM is not injective, by Corollary 6.11 there is some maximal ideal
n ⊂ S such that (i⊗R IdM )n : (N ⊗RM)fn→ (N ′⊗RM)n is not injective. We can
now rewrite the previous map as i⊗RIdM⊗S IdSn

: N⊗RM⊗SSn → N ′⊗RM⊗SSn,
and finally as i⊗IdMn

: N ⊗RMn → N ′ ⊗RMn; the non-injectivity of the last map
contradicts the assumption that Mn be a flat R-module. �

Exercise 12.11. Generalise the statements (1) and (2) in Proposition 12.5 to the
following setting. Let φ : R → S be a ring homomorphism, making S into an
R-algebra. Let M be an R-module. Prove the following:

• if M is flat over R, then φ∗M = S ⊗RM is flat over S;
• if M is faithfully flat over R, then φ∗M = S ⊗RM is faithfully flat over S.
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In doing this, Exercise 12.10 may be useful.

13. Integral dependence

In school we have learnt that not all real numbers are rational. In fact, the prompt
to enlarge rational numbers to real numbers comes usually from geometric situations
in which one wants to measure an actual length, but there is not suitable rational
number for that. The first example of an “irrational” number one encounters is
usually something like

√
2, expressing the length of the diagonal of a square of

side length 1; the second famous example is π, expressing half of the length of a
circle of radius 1. One also learns that

√
2, though irrational, satisfies the equality√

2
2 − 2 = 0; that is, the polynomial t2 − 2 ∈ Z[x] is such that, when evaluated at

t =
√

2, vanishes. One learns also that there is no such polynomial for π, not even
if one looks for it inside Q[t]. The invention of complex numbers, generalising real

numbers, follows a similar pattern as introducing
√

2, thus extending Q: there is
no real number i such that i2 + 1 = 0, so one just invents it! In a certain sense,
both complex numbers

√
2 and i are more close to being rational than π: even if

they are not rational, they at least satisfy a polynomial equation with coefficients
in Q.

13.1. Definition of integral (and algebraic) dependence. We want to study
general situations in which we have a ring homomorphism f : R→ S (in the exam-
ples above, it was an inclusion like Q ↪→ C), and we want to distinguish elements
of S satisfying some polynomial equation “with coefficients in R”: more precisely,
we will consider those polynomials in S[t] in the image of the ring homomorphism
F : R[t] → S[t] induced by f , and ask which elements of s are sent to zero by the
function S → S induced by one such polynomial.

Notation 13.1. Given a ring homomorphism f : R→ S, by abuse of notation we
will often denote by f also the ring homomorphism f⊗R IdR[t] : R[t] = R⊗RR[t]→
S[t] ∼= S ⊗R R[t], i.e. the induced ring homomorphism between polynomial rings.
By even bigger abuse of notation, whenever f is injective we will just consider R
as a subring of S and thus consider R[t] as a subring of S[t].

Definition 13.2. Let f : R→ S be a ring homomorphism, and consider thus S as
an R-algebra. Let b ∈ S. We say that:

• b is algebraic, or algebraic dependent over R if there is a non-zero polynomial
P ∈ R[t] such that f(P )∗(a) = 0 ∈ S;
• b is integral, or integral dependent over R if there is a monic polynomial
P ∈ R[t] such that f(P )∗(a) = 0 ∈ S.

In the previous definition, recall that a polynomial P ∈ R[t] is monic if lc(P ) = 1,
as in Definition 7.13; concretely, we have P = tn+an−1t

n−1 + · · ·+a1t+a0 for some
n ≥ 0 and some a0, . . . , an−1 ∈ R. Apart when coefficients are in the zero ring,
monic polynomials are non-zero, so that being integral implies being algebraic.
In the light of 13.2,

√
2 and i are integral over Z whereas π is not. At first glance,

the notion of algebraic dependence looks both more genuine and more general than
that of integral dependence, but the following two examples will motivate our focus
on the latter notion in the entire section.

Example 13.3. Let k is a field and let S be a non-zero k-algebra, so we can regard
k as a subring of S; then an element b ∈ S is algebraic over k if and only if b is
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also integral over k: indeed if P ∈ k[t] is non-zero and such that P∗(b) = 0, then
P/lc(P ) is monic and still satisfies (P/lc(P ))∗(P ) = 0.
More generally, if f : R→ S is a ring homomorphism and b ∈ S is algebraic over R,
with witnessing polynomial P ∈ R[t], then at least the element b

1 in the localisation

Slc(P ) is integral over R, as witnessed by the monic polynomial P
lc(P ) ∈ Slc(P )[t].

Example 13.4. Let f : R → S be a ring homomorphism, let I ⊆ R and J ⊆ S
be ideals, and assume f(I) ⊆ J ; then there is an induced ring homomorphism
f̄ : R/I → S/J . If b ∈ S is integral over R, then [b]J is integral over R/I: for if
P ∈ R[t] is monic with f(P )∗(b) = 0, then also the polynomial [P ]I ∈ R/I[t] is
monic, and f̄([P ]I)∗([b]J) = [f(P )∗(b)]J = [0]J = 0.
In general, if we only assume that b is algebraic over R, then [b]J is not algebraic
over R/I. For example, let R = Z, let S = Z[x]/(2x), and let f be the unique
ring homomorphism; then [x]2x is algebraic over Z, as witnessed by the polynomial
2t ∈ Z[t]. We can now consider the ideals J = ([2]2x) ⊂ S and I = (2) ⊂ Z; then we
have R/I = Z/2, S/J ∼= Z[x]/(2x, 2) = Z[x]/(2) = Z/2[x], and f̄ : Z/2 ↪→ Z/2[x] is
the natural inclusion. The element x ∈ Z/2[x], corresponding to [[x]2x]2 ∈ S/J , is
no longer algebraic.

Example 13.5. Similarly, let f : R→ S be a ring homomorphism, let T ⊆ R and
T ′ ⊆ S′ be multiplicative subsets such that f(T ) ⊂ T ′; then there is an induced
ring homomorphism f̌ : RT → ST ′ . If b ∈ S is integral over R, then b

1 ∈ ST ′ is
integral over RT : for if P ∈ R[t] witnesses that b is integral over R, then the monic
polynomial P1 ∈ RT [t] witnesses that b

1 is integral over RT .
Consider instead the case of the inclusion or rings R = Z/6 ↪→ S = Z/6[x]/(2x) =
Z[x]/(6, 2x); then [x] ∈ S is algebraic over R, as witnessed by the non-zero poly-
nomial [2]6t. After localisation at the element [3]6 ∈ R ⊂ S, we obtain up to easy
identifications the inclusion of rings Z/2 ↪→ Z/2[x], and now x is no longer algebraic
over Z/2.

The previous examples show that over a field algebraic and integral dependence
are equivalent notions, and that integral dependence is preserved when passing to
quotient rings or localisations, whereas algebraic dependence may be lost. From
now on we will focus only on integral dependence. Just beware of the phenomenon
appearing in the following example.

Example 13.6. Let R = Z and S = Z[x]/(2x, x2); then [x] ∈ S is both alge-
braic over R, as witnessed by the polynomial 2t, and integral, as witnessed by the
polynomial t2; however the minimal degree of a polynomial wintessing the alge-
braic dependence of x is 1, which is strictly smaller than the minimal degree of a
polynomial witnessing integral dependence of x, which is in fact 2.
This of course has to do with the fact that, in general, if f : R → S is a ring
homomorphism and b ∈ S is an ideal, then the set of polynomials P ∈ R[t] such
that f(P )∗(b) = 0 is an ideal in R[t]; such an ideal is in general not principal, and
if it contains monic polynomials it may not be generated by monic polynomials.

13.2. Finite, finite type and integral algebras. Given a ring homomorphism
f : R→ S, we can consider S as an R-algebra or as an R-module. One says that

• S is an R-algebra of finite type if S is finitely generated as an R-algebra;
• S is a finite R-algebra if S is finitely generated as an R-module.
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Similarly f is said to be a ring homomorphism of finite type, or a finite ring ho-
momorphism. We already observed in Subsection 2.2 that if an R-algebra is finite,
then it is also of finite type (but the viceversa doesn’t hold in general). In light of
Definition 13.2, we give the following definition.

Definition 13.7. An R-algebra S is said to be integral (respectively, the structure
ring homomorphism R→ S is integral, or an integral extension) if every element of
S is integral over R.

Example 13.8. Looking at familiar fields, C is integral over R, as every complex
number z admits a conjugate complex number z̄ such that both s = z + z̄ and
p = zz̄ are real, and such that the polynomial t2 − st+ p vanishes when evaluated
at z. Instead, R is not integral over Q, as witnessed by real numbers such as π.
A more subtle example is that of Q as a Z-algebra: for the element 1

2 ∈ Q one

can easily find a non-zero polynomial P ∈ Z[t] such that P∗(
1
2 ) = 0, for instance

P = 2t − 1; but no monic polynomial has this property! So Q is not integral as a
Z-algebra.

Exercise 13.9. Prove the last claim of Example 13.8. More generally, prove that if
R is a unique factorisation domain and a

b ∈ Frac(R) is an element which is integral
over R (considered as a subring of Frac(R)), then in fact a

b ∈ R.

Exercise 13.10. Prove that every surjective ring homomorphism is integral. Prove
also that if f : R→ S is a ring homomorphism and f̄ : R/ ker(f) ↪→ S is the induced
ring homomorphism from the quotient R/ ker(f), then f is integral if and only if f̄
is integral (in fact, each element of S is integral over R if and only if it is integral
over R/ ker(f)).

There are some implications among the notions of integral, finite and finite type
algebra: the first is given by the following lemma.

Lemma 13.11. Let f : R→ S be a ring homomorphism making S into an integral
R-algebra of finite type; then S is a finite R-algebra.

Proof. A way to express that S is of finite type is that there is a surjective R-
algebra homomorphism g : R[x1, . . . , xn]→ S from a finitely generated polynomial
ring; letting bi = g(si) ∈ S, we can equivalently require that S is generated as
an R-module by all products be11 . . . benn , for varying exponents e1, . . . , en ≥ 0. In
principle, thus, one needs infinitely many elements to generate S as an R-module.
However, if S is integral over R, then for each 1 ≤ i ≤ n there is a monic polynomial
Pi ∈ R[t] such that f(Pi)∗(bi) = 0.
Now we appeal to the division algorithm for polynomials: if coefficients are taken
in a generic ring R, we can still divide succesfully by any monic polynomial: for any
Q,P ∈ R[t] with P monic, there exist unique A,B ∈ R[t] with B = 0 or deg(B) <
degP such that Q = AP +B. This holds in particular for any polynomial Q of the
form tei , and for P = Pi. Applying f(−)∗(bi) to the equality tei = Ai,eiPi+Bi,ei , we
obtain in S the equality beii = (Bi,ei)∗(bi); using that Bi,ei is a linear combination
over R of 1, t, . . . , tdegPi−1, we thus obtain that each power beii can be expressed as

a linear combination over R of the finitely many powers 1, bi, . . . , b
degPi−1
i . Taking

products over 1 ≤ i ≤ n, we finally obtain that every product be11 . . . benn can be

expressed as an R-linear combination of the finitely many products bj11 . . . bjnn , for
varying 0 ≤ ji ≤ degPi − 1. �
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In fact the argument of proof of Lemma 13.11 shows the following statement, that
we keep for future reference.

Lemma 13.12. Let f : R → S be a ring homomorphism. Assume that there is a
surjective R-algebra homomorphism g : R[x1, . . . , xn] � S, for some n ≥ 1, such
that g(xi) is integral over R. Then S is a finite R-algebra.

Example 13.13. Both hypotheses “integral” and “finite type” are necessary in
Lemma 13.11. For instance:

• k[x] is of finite type but not integral over k (x is not integral), and in fact
k[x] is not finite over k;
• S = k[x1, x2, . . . ]/(x1, x2, . . . )

2 is integral over k: indeed every element
b = a +

∑
i≥0 ci[xi], with a, ci ∈ k, satisfies the equality b2 − 2ab + a2 =

(b− a)2 = 0; yet S is not of finite type, and hence also not finite over k.

We will see later that in fact also the converse to Lemma 13.11 holds, in Corollary
13.19

13.3. Two manipulations of polynomials. One of the simplest and yet most
beautiful applications of the notion of integral dependence is that if f : R → S is
integral, then one can detect whether an element of S is invertible by looking at
the monic polynomial(s) in R[t] that vanish when evaluated at the element.

Lemma 13.14. Let f : R→ S be an integral extension and let b ∈ S be an element.
Then b ∈ S× if and only if there exists a monic polynomial P = tn + an−1t

n−1 +
· · ·+ a1t+ a0 ∈ R[t] with a0 ∈ R× and such that f(P )∗(b) = 0.

Proof. Suppose first that there is an equality bn + f(an−1)bn−1 + · · · + f(a1)b +
f(a0) = 0 with a0 ∈ R× and a1, . . . , an−1 ∈ R. Then also f(a0) is invertible in S,
and the equality 1 = b · −1

f(a0) (f(an−1)bn−1 + · · ·+ f(a1)b) shows that b ∈ S×.

Viceversa, assume that b ∈ S×. Let P = tn + an−1t
n−1 + · · · + a1t + a0 and

Q = tm + cn−1t
n−1 + · · · + c1t + c0 be monic polynomials such that f(P )∗(b) =

f(Q)∗(b
−1) = 0. Then the polynomial Q′ := c0t

m + c1t
m−1 + · · · + cn−1t + 1 is

possibly not monic, but it is such that f(Q′)∗(b) = 0. We can now consider the
polynomial tmP + Q′: it is monic of degree m + n, its constant term is 1, and its
evaluation at b vanishes. �

Example 13.15. Let R ⊆ S be an injective, integral extension of domains. Then
R is a field if and only if S is a field. To see this, if R is a field then for every
b ∈ S we can find a monic polynomial P ∈ R[t] with P∗(b) = 0. If b 6= 0, we can
factor P = tmP ′ with P ′ monic having non-zero constant term, and the equality
P∗(b) = bmP ′∗(b) = 0, together with S being a domain, implies that P ′∗(b) = 0; now
Lemma 13.14 ensures that b ∈ S×.
Viceversa, if S is a field, then for every b ∈ R with b 6= 0 we have b ∈ S×, so by
Lemma 13.14 we can find an equality bn + an−1b

n−1 + · · · + a1b + a0 = 0 with
a0 ∈ R× and a1, . . . , an−1 ∈ R; note that all terms involved in the equality are in
the ring R ⊆ S. We then have b · (bn−1 + an−1b

n−2 + · · ·+ a1) = −a0 ∈ R, hence b
is a divisor of an invertible element of R, and is therefore also invertible.

The following lemma will be needed at least twice in the future: in the proof of
Nakayama lemma 14.10, and in the characterisation of integral elements in any ring
extension given in Proposition 13.18.
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Lemma 13.16. Let R be a ring and let M be an R[x]-module which is finitely
generated also when considered as an R-module. Let I ⊆ R be an ideal (possibly
I = R) and suppose that xM ⊆ IM . Then there is a monic polynomial P ∈ R[x]
of the form P = xn + cn−1x

n−1 + · · · + c1x + c0 such that PM = 0 and such that
a0, . . . , an−1 ∈ I.

Proof. The proof will be based on the Cayley-Hamilton theorem (or a variation of
that argument, depending on what one means by “Cayley-Hamilton”. Let S be
a commutative ring, and for n ≥ 1 denote by Matn(S) the set of n × n matrices
with coefficients in S. Given a matrix C = (ci,j) ∈ Matn(S), the determinant
det(C) ∈ S can be defined using the Leibniz formula as the sum

det(C) =
∑
σ∈Sn

sgn(σ)

(
n∏
i=1

ci,σ(i)

)
,

where Sn is the nth symmetric group, i.e. the group of permutations of the set
{1, . . . , n}, and the sign of a permutation σ is 1 if σ is even, and −1 if σ is odd.
For n ≥ 2, given a matrix C ∈ Matn−1(S), for all fixed 1 ≤ i, j ≤ n we denote

by Ĉi,j ∈ Matn− 1(S) the matrix obtained by removing the ith row and the jth

column from the matrix A (and by reindexing the entries in the most natural way):
this is usually called the (i, j)th “minor” of the matrix C. Then the Laplace rule
tells us that for any fixed 1 ≤ ī ≤ n, or for any fixed 1 ≤ j̄ ≤ n, we can compute

det(C) = (−1)ī−1
n∑
j=1

(−1)j−1cī,j det(Ĉī,j) = (−1)j̄−1
n∑
i=1

(−1)i−1ci,j̄ det(Ĉi,j̄).

We can now define, for a given matrix C ∈ Matn(S), with n ≥ 2, a new matrix

C̃ = (c̃i,j) ∈ Matn(S), usually called the “adjugate matrix” of C, by setting c̃i,j =

(−1)i+j det(Ĉi,j). For n = 1 we also set C̃ = (1). The usual rule for matrix

multiplication, together with the Laplace rule, tells us that C · C̃ = C̃ · C =
det(C)Idn ∈ Matn(C) (this is known as the “Cramer rule”).
Now we start the actual proof of the lemma. Let m1, . . . ,mn ∈ M be generators
of M over R, with n ≥ 1 (if M = 0 there is not much to prove...). The hypothesis
xM ⊆ IM allows us to find, for each 1 ≤ i ≤ n, coefficients ai,j ∈ I for 1 ≤ j ≤ n
such that xmi =

∑n
j=1 ai,jmj . Let A = (ai,j) ∈ Matn(R) ⊂ Matn(R[x]), let C =

(ci,j) = xIdn − A ∈ Matn(R[x]), and let C̃ = (c̃i,j) ∈ Matn(R[x]) be the adjugate
matrix. Notice that for all 1 ≤ k ≤ n we have in M the equality

∑n
j=1 ck,jmj . Fix

now 1 ≤ i ≤ n; then we have the following chain of equalities in M

0 =

n∑
k=1

c̃i,k

 n∑
j=1

ck,jmj

 =

n∑
j=1

(
n∑
k=1

c̃i,kck,j

)
mj =

n∑
j=1

(det(C)Idn)i,jmj = det(C)mi

where the third equality is given by the usual rule for computing the entries of a
product matrix. Hence det(C) = det(xIdn − A) ∈ R[x] is an element that kills
all generators mi of M . We also notice that the only contribution of degree n
to det(C) comes from choosing the identity permutation in Sn, according to the
Leibniz rule; in other words, det(C) is the sum of

∏n
i=1(x− ai, i) and other terms

of degree ≤ n− 1 in x; as such, det(C) is a monic polynomial. We finally observe
that the ring homomorphism R[x] → R[x]/(I) sends C to the matrix [C](I) :=
([ai,j ](I)) ∈ Matn(R[x]/(I)), and we have the equality det([C](I)) = [det(C)](I);
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since [C](I) = [xIdn](I), we have that [det(C)](I) = [det(xIdn)](I) = [xn](I): this
proves that all non-leading coefficients of det(C) lie in I. �

Exercise 13.17. Let f : R → S be a ring homomorphism, and let b ∈ S be an
element which is integral over R.

• Prove that the set I of all elements a ∈ R such that there exists P ∈ R[t]
monic with P∗(0) = a and f(P )∗(b) = 0 is an ideal of R; prove also that
I ⊆ f−1((b)) (the preimage along f of the principal ideal (b) ⊆ S).
• Prove that in general I 6= f−1((b)). Hint: consider the case R = Z ↪→ S =

Z[
√

2] and b = 3
√

2; prove that 6 ∈ (b) but 6 /∈ I.

Observe that Lemma 13.14 essentially proves that the ideal I from Exercise 13.17
is the entire ring R if and only if b is invertible.

13.4. Characterisation of integral elements. We can now characterise integral
elements in a ring extension, and prove the converse of Lemma 13.11.

Proposition 13.18. Let f : R→ S be a ring homomorphism, and let b ∈ S. Then
the following are equivalent:

(1) b is integral over R, in the sense of Definition 13.2;
(2) the subring f(R)[b] ⊆ S generated by b and the image of f is finitely gen-

erated as an R-module;
(3) there exists a finitely generated R-module M ⊆ S containing f(R) and such

that b ·M := {bm |m ∈M} ⊆M (in the latter we use the product operation
of S);

(4) there is an f(R)[b]-module M which is finitely generated over R and such
that the action of f(R)[b] on M does not factor through any ideal of f(R)[b]
(one says that M is a “faithful” f(R)[b]-module).

Proof. (1)⇒ (2). If b is integral, let P = tn + an−1t
n−1 + · · · + a0 ∈ R[t] be a

monic polynomial with f(P )∗(b) = 0. As in the proof of Lemma 13.11, we can
invoke the division algorithm for polynomials and prove that every polynomial
in R[t] can be written as the sum of a multiple of P and another polynomial of
degree at most n − 1. Changing coefficients via f and then evaluating at b gives
by definition of f(R)[b] a surjective ring homomorphism f(−)∗(b) : R[t]→ f(R)[b],
and the previous argument shows that (−)∗(b) is surjective also when restricted
to the sub-R-module of R[t] spanned by polynomials of degree ≤ n − 1; this is a
finitely generated R-module, hence f(R)[b] is also a finitely generated R-module.

(2)⇒ (3). If f(R)[b] is finitely generated as an R-module, then by definition it is
also such that b·f(R)[b] ⊆ f(R)[b] and f(R) ⊆ f(R)[b], so we just take M = f(R)[b].

(3)⇒ (4). If there is a finitely generated R-module M ⊆ S such that b ·M ⊆ M
and f(R) ⊆ M , then the first condition allows us to consider M as an f(R)[b]-
module; moreover if an element c ∈ f(R)[b] acts as zero on the entire M , the
second condition, implying 1S ∈M , tells us that c · 1S = 0, so c = 0.

(4)⇒ (1). Let M be an f(R)[b]-module which is finitely generated over R; the
surjective R-algebra homomorphism R[x] � f(R)[b] sending a ∈ R to f(a) ∈
f(R) ⊆ f(R)[b] and sending x 7→ b allows us to consider M as an R[x]-module,
which is still finitely generated over R. By Lemma 13.16 there is a monic polynomial
P ∈ R[x] such that PM = 0. This implies that the element f(P )∗(b) acts trivially
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on M , and if we assume that the action of f(R)[b] on M doesn’t factor through any
ideal of f(R)[b], we conclude that f(P )∗(b) = 0, whence b is integral over R. �

Proposition 13.18 has a number of corollaries.

Corollary 13.19. Let f : R→ S be a finite ring homomorphism. Then f is integral
and of finite type.

Proof. We have already observed several times that a finite ring homomorphism
is also of finite type (an R-algebra which is finitely generated as an R-module is
also finitely generated as an R-algebra). If f is finite, then M = S satisfies (3) in
Proposition 13.18 for any b ∈ S, hence any b in S is integral over R. �

Corollary 13.20. Let f : R→ S be an integral ring homomorphism.

(1) If I ⊆ R and J ⊆ S are ideals with f(I) ⊆ J , then the induced ring
homomorphism f̄ : R/I → S/J is again integral.

(2) If T ⊆ R is a multiplicative subset, then the induced ring homomorphism
fT : RT → Sf(T ) is again integral.

Proof. Part (1) is a direct consequence of Example 13.4. For part (2), let b
f(s) ∈

Sf(T ); then b is integral over R, and this is witnessed by some monic polynomial

tn+an−1t
n−1+· · ·+a0 ∈ R[t]. The monic polynomial tn+ an−1

s tn−1+· · ·+ a0
sn ∈ RT [t]

then witnesses that b
f(s) is integral over RT . �

Corollary 13.21. Let f : R→ R′ and f ′ : R′ → R′′ be ring homomorphisms.

(1) If f and f ′ are of finite type, then f ′ ◦ f is of finite type.
(2) If f and f ′ are finite, then f ′ ◦ f is finite.
(3) If f and f ′ are integral, then f ′ ◦ f is integral.

Proof. For (1), let g : R[x1, . . . , xn] � R′ and g′ : R′[y1, . . . , ym] � R′′ be surjec-
tive homomorphisms of R-algebras and R′-algebras, respectively. Then the ring
homomorphism g̃ : R[x1, . . . , xn][y1, . . . , ym] → R′[y1, . . . , ym] induced by g is also
surjective. The composition g′ ◦ g̃ : R[x1, . . . , xn, y1, . . . , ym] � R′′ shows that R′′

is an R-algebra of finite type.
For (2), let similarly r′1, . . . , r

′
n ∈ R′ and r′′1 , . . . , r

′′
m ∈ R′′ be elements such that R′

is generated by r′1, . . . , r
′
n ∈ R′ as an R-module and R′′ is generated by r′′1 , . . . , r

′′
m ∈

R′′ as an R′-module. Then the elements g′(r′i)r
′′
j exhibit R′′ as a finitely generated

R-module.
For (3), let b ∈ R′′; since R′′ is integral over R′, we can find an equality bn +
g′(an−1)bn−1 + · · ·+ g′(a1)b+ g′(a0) = 0 in R′′, with a0, . . . , an−1 ∈ R′. Denoting
by R[a0, . . . , an−1] ⊆ R′ the sub-R-algebra generated by the elements a0, . . . , an−1,
we have by Lemma 13.12 that both ring homomorphisms R→ R[a0, . . . , an−1] and
R[a0, . . . , an−1] → R′′ are finite, hence by (2) also their composition is finite, and
by Corollary 13.19 we have that R′′ is integral over R. �

13.5. Integral closure along a ring homomorphism.

Notation 13.22. Given a ring homomorphism f : R → S making S into an R-
algebra, one often denotes by R̃ the subset of S of all elements that are integral
over R. This notation is mostly used in contexts where the ring homomorphism f
(often an injection) is understood.
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As the next Lemma 13.23 shows, R̃ is a subring of S and contains f(R): therefore

R̃ is often called the integral closure of R in S, especially when f is an inclusion,
so that one has R ⊆ R̃ ⊆ S.

Corollary 13.23. Let f : R → S be a ring homomorphism. Then R̃ is a subring
of S and f(R) ⊆ R̃.

Proof. For every element b ∈ f(R) there is a ∈ R such that f(a) = b; the polynomial

t−a ∈ R[t] witnesses that b is integral over R. This shows that f(R) ⊆ R̃. To show

that R̃ is a subring of S, we have to prove that product and sum of elements in R̃
are again in R̃ (this is enough also to settle differences, as we already have checked

that −1 ∈ R̃). Let therefore b, b′ ∈ R̃ and consider the subring f(R)[b, b′] ⊆ S,
i.e. the image of the R-algebra homomorphism R[x, x′] → S sending x 7→ b and
x′ 7→ b′. Then by Lemma 13.12 we have that f(R)[b, b′] is a finite R-algebra, and
by Corollary 13.19 we have that f(R)[b, b′] is an integral R-algebra: that is, every
element of f(R)[b, b′], in particular b+ b′ and bb′, are integral over R. �

In general, if b, b′ ∈ S are integral and P, P ′ ∈ R[t] are monic polynomials witnessing
that, it is not immediate to find a monic polynomial P ′′ ∈ R[t] witnessing that b+b′

is integral. With a little work, involving the theory of symmetric polynomials, one
can in fact show that there is such a P ′′ of degree equal to deg(P ) · deg(P ′), whose
coefficients are expressed as polynomial functions of the coefficients of P and P ′.
A similar statement holds for the integral element bb′. This leads to an alternative
proof of Lemma 13.23, which we will not discuss here.

Lemma 13.24. Let f : R → S be a ring homomorphism and let R̃ ⊆ S be the
integral closure of R as in Notation 13.22. Consider S as an R̃-algebra, and thus

consider the integral closure ˜̃R ⊆ S of R̃ in S. Then R̃ = ˜̃R.

Proof. By Corollary 13.21, the composite R
f→ R̃ ↪→ ˜̃R is an integral ring homo-

morphism, as it is a composition of integral maps, and thus we have ˜̃R ⊆ R̃; the

inclusion R̃ ⊆ ˜̃R is a consequence of Lemma 13.23. �

Definition 13.25. If R is a domain and S = Frac(R), the integral closure R̃ is
also called the normalisation of R. A domain R is normal if it coincides with its
normalisation (as a subring of Frac(R)).

We conclude the subsection with some examples of domains ant their normalisation.

Example 13.26. Let R be a unique factorisation domain; then the normalisation
of R, i.e. the integral closure of R in Frac(R), coincides with R. This is the case,
for instance, for Z, Z[x1, . . . , xn], k[x1, . . . , xn].

Example 13.27. Let Q[
√

3] ⊂ R be the subfield containing all elements a + b
√

3

with a, b ∈ Q, and consider the inclusion Z ↪→ Q[
√

3]. Then Z̃ contains all elements

a+ b
√

3 with a, b ∈ Z, and this already shows that Z 6= Z̃; but Z̃ is even larger than

that: for example the element 1
2 +

√
3

2 belongs to Z̃, as witnessed by the polynomial

t2 − t+ 2. In fact all elements of Z̃ have the form a
2 + b

√
3

2 with a+ b even.

Example 13.28. Let k be a field and let R = k[x2, x3] ⊆ k[x] be the subring
spanned by polynomials whose degree-1 monomial vanishes. One often presents
k[x2, x3] as the ring k[y, z]/(y2 − z3), by identifying y = x3 and z = x2. Then
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Frac(R) = Frac(k[x]) = k(x), and the element x is integral over R, as the polyno-

mial t2 − x2 witnesses. Thus, by Lemma 13.23, R̃ is at least as large as k[x]; by

Example 13.26 we have that k[x] is normal, and therefore R̃ = k[x].

13.6. Integral closure and localisation. We conclude by analysing the interac-
tion between localisation and integral closure along a ring homomorphism.

Lemma 13.29. Let f : R → S be a ring homomorphism and let T ⊆ R be a
multiplicative subset, and consider the induced ring homomorphism f̄ : RT → Sf(t);

let (̃RT ) ⊆ Sf(t) be the integral closure of RT in Sf(t). Let moreover R̃ ⊆ S

be the integral closure of R in S, and let (R̃)f(T ) be the localisation of R̃ at the

multiplicative subset f(t) ⊆ R̃. Then (̃RT ) = (R̃)f(T ).

Proof. For the inclusion (̃RT ) ⊆ (R̃)f(T ), let b
f(s) ∈ Sf(T ) be integral over RT , with

b ∈ S and s ∈ T , and let tn + an−1

sn−1
tn−1 + · · ·+ a0

s0
∈ RT [t] be a monic polynomial

witnessing that. The equality(
b

f(s)

)n
+
f(an−1)

f(sn−1)

(
b

f(s)

)n−1

+ · · ·+ f(a0)

f(s0)
= 0 ∈ Sf(T )

can be rewritten, after setting s′ := sns0 . . . sn−1 ∈ T and a′i = ais
n−i∏

j 6=i sj ∈ R,
as

1

f(s′)

(
bn + f(a′n−1)bn−1 + · · ·+ f(a′0)

)
= 0 ∈ Sf(T ).

The last equality must be witnessed by some s′′ ∈ T such that in S we have the
equality

f(s′′)
(
bn + f(a′n−1)bn−1 + · · ·+ f(a′0)

)
= 0 ∈ S.

Multiplying further by (f(s′′))n−1, we obtain that f(s′′)b ∈ S is integral over R.

Thus b
f(s) = f(s′′)b

f(s′′s) ∈ (R̃)f(T ).

For the other inclusion (R̃)f(T ) ⊆ (̃RT ), let b
f(s) ∈ Sf(T ) with b ∈ R̃ and s ∈ T .

Then b
1 is integral over R and hence also over RT , whereas 1

f(s) is integral over RT

as witnessed by the polynomial t − 1
s . By Lemma 13.23 the product a

f(s) = a
1

1
f(s)

is also integral over RT . �

We can use Lemma 13.29 to prove that being normal is a local property of a domain,
in the following, strong sense. We observe that if R is a domain and T ⊆ R\{0} is a
multiplicative subset, then RT is again a domain and Frac(RT ) can be canonically
identified with Frac(R).

Proposition 13.30. Let R be a domain. Then the following are equivalent:

(1) R is normal in the sense of Definition 13.25;
(2) Rp is normal for any p ∈ Spec(R);
(3) Rm is normal for any maximal ideal m ⊂ R.

Proof. (1)⇒ (2). By Lemma 13.29, letting T = R \ p and S = Frac(S), we have

(̃RT ) = (R̃)T = RT .

(2)⇒ (3). Every maximal ideal is in particular a prime ideal.

(3)⇒ (1). Let a
s ∈ Frac(R) be integral over R. Then a

s is also integral over Rm for
any maximal ideal m ⊂ R, and thus we have a

s ∈ Rm ⊆ Frac(R). For each maximal
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ideal m we can therefore find am ∈ R and sm ∈ R \ m with a
s = am

sm
∈ Frac(R).

Moreover the ideal I ⊆ R generated by all elements sm, for varying m maximal in
R, is not contained in any maximal ideal of R, and thus it must be equal to R and
in particular contain 1 ∈ R: so there exist maximal ideals m1, . . . ,mn and elements
c1, . . . , cn ∈ R such that c1sm1 + · · · + cnsmn = 1. We then have an equality in
Frac(R)

a

s
= 1 · a

s
=

n∑
i=1

cibmi

ami

smi

=

n∑
i=1

ciami
,

and the last expression clearly gives an element in R ⊆ Frac(R). �

Exercise 13.31. Let f : R → S be a ring homomorphism, let s1, . . . , sr ∈ R be
elements such that the ideal (s1, . . . , sr) = R. Suppose that each induced ring
homomorphism Rsi → Sf(si) is integral; prove that f is already integral. (Hint: for
b ∈ S, consider the ideal of leading coefficients of polynomials P ∈ R[t] satisfying
f(P )∗(b) = 0, and prove that this ideal is the entire R.)

14. The “Going up” theorem and Nakayama lemma

Given a ring homomorphism f : R→ S, we have seen that there is an induced map
Spec(f) : Spec(S) → Spec(R); and we have seen that if f is faithfully flat, then
Spec(f) is surjective: every prime ideal of R is the contraction along f of some
prime ideal of S. For a generic ring homomorphism it is difficult to characterise the
image of Spec(f): surely it is contained in V(ker(f)) ⊆ Spec(R), but in the example
i : Z ↪→ Q we see that V(ker(i)) = V(0) = Spec(Z), yet the image of Spec(i) is only
the point (0) ∈ Spec(Z).

14.1. The “Lying over” theorem. The “Lying over” theorem settles the ques-
tion about the image of Spec(f) when f is an integral ring homomorphism.

Theorem 14.1 (Lying over). Let f : R → S be an integral ring homomorphism.
Then Im(Spec(f)) = V(ker(f)) ⊆ Spec(R).

In order to prove Theorem 14.1 we need the following proposition.

Lemma 14.2. Let f : R → S be an integral ring homomorphism. Then: a prime
ideal q ∈ Spec(S) is maximal if and only if Spec(f)(q) ∈ Spec(R) is maximal.

Proof. Let p := Spec(f))(q) = f−1(q). Then there is an induced ring homomor-
phism f̄ : R/p → S/q, which is injective between domains and is still integral by
Corollary 13.20. By Example 13.15, R/p is a field if and only if S/q is a field. �

Proof of Theorem 14.1. The inclusion Im(Spec(f)) ⊆ V(ker(f)) follows from the
generic fact that if J ⊆ S is an ideal, then f−1(J) is an ideal of R containing
ker(f). Let now p ⊂ R be some prime ideal containing ker(f); we want to show
that there is some prime ideal q ∈ Spec(R) “lying over” p. For this, we use a
similar strategy as in the proof of Theorem 12.6: we let T := R \ p and consider
the induced ring homomorphism fT : RT → Sf(T ), which by Corollary 13.20 is still
an integral extension. We observe that f(T ) does not contain 0, as T ∩ ker(f) = ∅,
and this implies that Sf(T ) is not the zero ring, so there is some maximal ideal
n ⊂ Sf(T ). By Lemma 14.2, since fT is integral, we have that Spec(fT )(n) is a
maximal ideal of RT ; the ring RT is local, with unique maximal ideal m being is
the extension of p along the localisation map τT : R → RT , and hence we must
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have Spec(fT )(n) = m. If we denote by τf(T ) : S → Sf(T ) the localisation map and
set q = Spec(τf(T ))(q) ∈ Spec(S), we have that Spec(f) : q 7→ psince the following
diagram of rings is commutative (we also write next to each ring the relevant prime
ideal that it contains)

p R S q

m RT Sf(T ) n.

⊂ f

τT τf(T )

⊃

⊂ fT ⊃

�

We observe that if f : R → S is an injective, integral ring homomorphism, then
Theorem 14.1 implies that Spec(f) : Spec(S)→ Spec(R) is surjective. By Theorem
12.6 we then have that f is flat if and only if it is faithfully flat.

Example 14.3. For a field k, the inclusion of rings k ↪→ k[x] is faithfully flat, but
it is not integral.

14.2. The “Going up” theorem. The “Going up” theorem is a refinement of
the “Lying over” theorem, as it concerns the spectra Spec(R) and Spec(S) involved
in an integral extension of rings not just as sets, but as posets (with inclusion of
prime ideals giving the partial order).

Theorem 14.4 (Going up). Let f : R → S be an integral extension, let q ∈
Spec(S), denote p = Spec(f)(q) ∈ Spec(R), and let p′ ∈ Spec(R) be a prime ideal
of R with p ⊆ p′. Then there is q′ ∈ Spec(S) with q ⊆ q′ and Spec(f)(q′) = p′.

Proof. Let g : R→ S/q be the composite ring homomorphism R
f→ S � S/q. Then

g is a composite of integral morphisms, so it is again integral by Corollary 13.21.
By Theorem 14.1, since p′ is a prime ideal of R containing ker(g) = p = f−1(q) =
g−1(0), we can find a prime ideal q̄′ ∈ Spec(R/q) with Spec(g)(q̄′) = p′. We then
take q′ to be the preimag of q̄′ in S. �

An immediate consequence of Theorem 14.4 is the following: let f : R → S be an
integral ring homomorphism, and let p0 ⊂ · · · ⊆ pl be a chain of prime ideals in R;
then for any “lift” q0 of p0 to a prime ideal in S, we can find a chain of prime ideals
q0 ⊆ · · · ⊆ ql ⊂ S such that Spec(f) : qi 7→ pi for all 0 ≤ i ≤ l, by “going up” the
chain. This last statement is sometimes known as the “Going up” theorem.
Recall now the definition of Krull dimension of a ring (Definition 9.2). A direct
consequence of the “Going up” theorem is the following.

Corollary 14.5. Let f : R→ S be an injective integral ring homomorphism. Then
dim(R) ≤ dim(S).

Proof. Let p0 ⊂ pq ⊂ · · · ⊂ pl ⊂ R be a strictly increasing chain of prime ideals in R.
By Theorem 14.1 we can find q0 ∈ Spec(S) with Spec(f)(q0) = p0, and by Theorem
14.4 we can lift the entire chain to a chain of prime ideals q0 ⊆ q1 ⊆ · · · ⊆ ql ⊂ S; no
equality qi = qi+1 can occur, for otherwise we would also have pi = Spec(f)(qi) =
Spec(f)(qi+1) = pi+1. This shows that for any strictly increasing chain of prime
ideals in R we can find a strictly increasing chain of prime ideals in S of the same
length, and this implies dim(R) ≤ dim(S). �

To prove the converse of Corollary 14.5 we need a lemma.
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Lemma 14.6. Let f : R→ S be an integral ring homomorphism, and let q1 ⊆ q2 be
nested prime ideals in Spec(S) such that Spec(f)(q1) = Spec(f)(q2). Then q1 = q2.

Proof. The argument is similar to the one of the proof of Theorem 12.6 and Theorem
14.1. Let p := Spec(f)(q1) = Spec(f)(q2) and let T := R \ p; then f(T ) is disjoint
from both q1 and q2, so that the extensions q′1 = (τf(T )(q1)) and q′2 = (τf(T )(q2) are
prime ideals in Sf(T ) (in particular, they are proper). The map fT : RT → Sf(T )

is integral by Corollary 13.20; moreover q′1 ⊆ q′2, and Spec(fT )(qi), for i = 1, 2 is
a prime ideal of RT whose contraction to R is p: the only such prime ideal is the
(unique) maximal ideal of RT . It follows from Lemma 14.2 that both q′1 and q′2 are
maximal, since q′1 ⊆ q′2 we must have q′1 = q′2; we then have q1 = Spec(τf(T ))(q

′
1) =

Spec(τf(T ))(q
′
2) = q2 as desired. �

Corollary 14.7. Let f : R→ S be an integral ring homomorphism. Then dim(S) ≤
dim(R).

Proof. Let q0 ⊂ q1 ⊂ · · · ⊂ ql ⊂ S be a strictly increasing chain of prime ideals
in S; applying Spec(f) we obtain a chain of prime ideals p0 ⊆ p1 ⊆ · · · ⊆ pl ⊂ R;
this chain must also be strictly increasing, for if pi = pi+1, Lemma 14.6 implies
that qi = qi+1, against our assumption. Hence for every strictly increasing chain of
prime ideals in S we can find a strictly increasing chain of prime ideals in R of the
same length, and this implies dim(S) ≤ dim(R). �

Example 14.8. For a non-injective integral ring homomorphism f : R→ S we can
have a strict inequality dim(S) < dim(R): for instance the surjection Z � Z/p,
for p a prime, is integral (as any surjective ring homomorphism), and dim(Z/p) =
0 < dim(Z) = 1. What “goes wrong” in the argument leading to Corollary 14.5 is
the application of the “Lying over” theorem to the prime ideal (0) ∈ Spec(Z), since
(0) /∈ V(ker(Z � Z/p)) = V(p) = {(p)}. In general, if f : R → S is integral and

ker(f) ⊆
√

(0) ⊆ R, then dim(R) = dim(S).

Example 14.9. If f : R → S is not a ring homomorphism, then the statement of
the “Going up” theorem in general fails. For instance, take the inclusion i : Z ↪→ Q;
then (0) ∈ Spec(Q) is sent via Spec(i) to (0) ∈ Spec(Z); for any maximal ideal
(p) ∈ Spec(Z) we have (0) ⊆ (p), yet (p) is not in the image of Spec(i).

14.3. Nakayama lemma. On a different note, we now discuss Nakayama lemma.

Lemma 14.10 (Nakayama). Let R be a ring, I ⊆ R an ideal and M a finitely
generated R-module. Suppose that IM = M . Then there is an element a ∈ R with
aM = 0 and [a]I = [1]I ∈ R/I.

Proof. Consider the R-algebra homomorphism f : R[x] → R sending x 7→ 1; then
f∗M is an R[x]-module which is finitely generated as an R-module, so we may apply
Lemma 13.16 and find a monic polynomial P ∈ R[t] whose non-leading coefficients
are in I and such that P · f∗M = 0. It follows that P∗(1) ·M = f(P ) ·M = 0, and
[P∗(1)]I = [1]I . �

The following are corollaries of Nakayama lemma, that sometimes are also known
under the name of Nakayama lemma.

Corollary 14.11. Let R be a local ring with maximal ideal m, and let M be a
finitely generated R-module with mM = M . Then M = 0.
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Proof. By Lemma 14.10, we can find a ∈ R with [a]fm = [1]m and aM = 0; in
particular a /∈ m, so a ∈ R× (here we use that R is local) and thus M = 0. �

Corollary 14.12. Let R be a ring, I ⊆ R an ideal and M a finitely generated
R-module. Let N ⊆ M be a sub-R-module such that M = N + IM ; then there is
a ∈ R with [a]I = [1]I and aM ⊆ N . In particular, if R is local and I = m is its
maximal ideal, the conclusion is that N = M .

Proof. The condition M = N + IM is equivalent to the requirement that M/N =
I(M/N); since M/N is also finitely generated over R, we can apply Lemma 14.10
and find a ∈ R with [a]I = [1]I and a(M/N) = 0; the last condition is equivalent
to aM ⊆ N . In the case of R local and I = m, we have a ∈ R× and thus we have
M/N = 0, i.e. N = M . �

Corollary 14.13. Let R be a local ring with maximal ideal m, and let M be a
finitely generated R-module. Let m1, . . . ,mn be elements of M ; then m1, . . . ,mn

generated M over R if and only if [m1]mM , . . . , [mn]mM generated M/mM as a
vector space over R/m.

Proof. If the elements mi generated M over R, then the elements [mi]mM generated
M/mM over R and, equivalently, over R/m. Viceversa, assume that the elements
[mi]mM generated M/mM over R/m, and let N = SpanR(m1, . . . ,mn); then M =
N + mM , as this equality is equivalent to the surjectivity of the map N/mN →
M/mM induced by the inclusion N ⊆M . By Corollary 14.12 we then have M = N
as desired. �

Example 14.14. Recall that Q is not a finitely generated Z-module. For every
non-zero ideal I = (n) ⊆ Z we have Q = (n)Q, yet, at least for n ≥ 2, any a ∈ Z
with a ≡ 1 (mod n) also satisfies a 6= 0, so that we have aQ = Q instead of aQ = 0.

Example 14.15. If M is a finitely generated module over a local ring R with
maximal ideal m, Corollary 14.13 gives us a way to compute the minimal number
of generators necessary to generated M over R: this is the dimension of M/mM
over R/m.
If we now pick a basis [m1]mM , . . . , [mn]mM of M/mM over R/m, we can consider
the R-module homomorphism f : Rn →M sending the ith standard generator of Rn

to mi. By Corollary 14.13 we have that f is surjective; is it also an isomorphism?
In general not: think of the example in which M = R/m, then the dimension n will
be 1, m1 will be some element of R× = R \m, and the map f : R→ R/m given by
f(a) = [m1a]m is not injective.
If one however assumes that R is Noetherian and M is... flat, then with a little
homological algebra it is possible to prove that f is in fact an isomorphism; here
is for your curiosity the argument. If N = ker(f), then the short exact sequence

0→ N → Rn →M → 0 gives rise to a long exact sequence · · · → TorR1 (M,R/m)→
N ⊗R R/m → (R/m)n → M/mM → 0 (if you don’t know what “Tor” means,
you will learn it when studying homological algebra). Since M is flat, we have

TorR1 (M,R/m) = 0, and moreover the last map (R/m)n →M/mM , induced by f ,
is an isomorphism. It follows that N ⊗R R/m = N/mN vanishes, and since R is
Noetherian we have that N is finitely generated over R and we can apply Corollary
14.11 to conclude that N = 0.
So for a finitely generated module over a local Noetherian ring, being flat is the
same as being free!
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14.4. A glimpse on the “Going down” theorem. Theorem 14.4 allows one,
in presence of an integral morphism f : R → S, to lift a chain of prime ideals
p0 ⊆ · · · ⊆ pl in R to a chain of prime ideals q0 ⊆ · · · ⊆ ql in S, provided that a lift
q0 of the smallest prime ideal p0 is given. Is it possible to find lifts that end with a
given prime ideal ql lifting pl? Under quite strong assumptions, the answer is yes.

Theorem 14.16 (Going down). Let f : R → S be an injective, integral map of
domains, with R normal (see Definition 13.25). Let p0 ⊆ · · · ⊆ pl be a chain of
prime ideals in R, and let ql be a prime ideal in S with f−1(ql) = pl. Then there
exists a chain of prime ideals q0 ⊆ · · · ⊆ ql in S with f−1(qi) = pi.

The strategy of the proof is the following. First, since f is injective, let us assume
that R ⊆ S is a subring. By Theorem 14.1 we can find some lift q̂0 of p0, and
by Theorem 14.4 we can extend this to a chain q̂0 ⊆ · · · ⊆ q̂l of prime ideals in S
lifting the original chain of prime ideals in R. If we are very lucky, we get that q̂l
is precisely the desired lift ql, and we are done.
Unfortunately we cannot expect to be lucky; the next idea is to look for an auto-
morphism of rings g : S → S fixing R pointwise and such that g(q̂l) = ql: in this
case we can apply g to the entire chain q̂0 ⊆ · · · ⊆ q̂l, and we win again.
In this light, it would be desirable if S admits many automorphisms as an R-
algebra. We next notice that enlarging S to an even larger domain S′ which is
still an integral extension of R, cannot harm: indeed S′ is also integral over S,
and by Theorem 14.1 we can lift ql to a prime ideal q′l; if we are able to solve
the Going-down problem for the extension R ⊆ S′, finding a chain of prime ideals
q′0 ⊆ · · · ⊆ q′l lifting the given chain in R, then we can intersect this chain with S
and obtain a chain of prime ideals in S with the desired properties.
What we do is to consider the algebraic closure Frac(R) of the field Frac(S) (which
is also the algebraic closure of Frac(S)), and inside here consider the integral closure

S′ = R̃ of R. The Galois group G of Frac(R) over Frac(R) acts on Frac(R) by field
automorphisms that fix Frac(R), and in particular R, pointwise. It follows that G

acts on Frac(R) preserving S′. One then has to prove that G acts transitively on
the set of prime ideals q′ ⊂ S′ satisfying q′ ∩ R = pl. See Section 3.3 in [Bos] for
the rest of the proof!

15. Nullstellensatz

Recall that, given a field k and an ideal I ⊆ k[x1, . . . , xn], we defined the associated
affine algebraic set V(I) ⊂ kn in Definition 2.36. We observed that V(−), considered
as a function from ideals of k[x1, . . . , xn] to subsets of kn, is in general not injective;
one reason, corresponding to the first half of Example 2.39, is that one always has
V(I) = V(

√
I); but even if we restrict V(−) to radical ideals, we have situations

like the one in the second half of Example 2.39, in which we even see a proper ideal
I satisfying V(I) = V(k[x1, . . . , xn]) = ∅. The Hilbert Nullstellensatz tells us that
if k is an algebraically closed field, then radical ideals of k[x1, . . . , xn] are faithfully
represented by their associated affine algebraic sets. We repeat the definition of
algebraically closed field.

Definition 15.1. A field k is algebraically closed if for every non-zero polynomial
P ∈ k[t] of degree ≥ 1 there is a ∈ k with P∗(a) = 0.

If a field k is algebraically closed, then every integral extension k → R in which R
is also a field is in fact a bijection k ∼= R.
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In the formulation of the Nullstellensatz we will use the notation V(−). It is
time to make this notation unambiguous, as for an ideal I ⊂ k[x1, . . . , xn], we
have denoted by “V(I)” both a subset of kn (Definition 2.36) and a subspace of
Spec(k[x1, . . . , xn]) (end of Subsection 3.1).

Definition 15.2. For a ring R, we denote by Specmax(R) ⊂ Spec(R) the subset
consisting of all maximal ideals of R.

Notation 15.3. For a generic ideal I in a generic ring R, we denote by V(I) ⊆
Spec(R) the set of all prime ideals of R containing I, and by Vmax(I) = V(I) ∩
Specmax(R) the set of all maximal ideals of R containing I.
Given any subset X ⊆ Spec(R), we denote by I(X) ⊂ R the (radical) ideal obtained
as intersection of all prime ideals in X.
If R is a k-algebra (e.g. R = k[x1, . . . , xn], we denote by Speckmax(R) ⊂ Specmax(R)
the set of all maximal ideals m of R such that the composite k → R → R/m is

an isomorphism of fields; equivalently, Speckmax(R) contains kernels of k-algebra

homomorphisms R→ k; and we denote by Vkmax(R) = Vmax(I) ∩ Speckmax(R).

Observe that the subset kn ⊆ Spec(k[x1, . . . , xn]) is precisely Speckmax(k[x1, . . . , xn]).

Theorem 15.4 (Nullstellensatz). Let k be a field. Then the following are equiva-
lent:

(1) k is algebraically closed;
(2) for all n ≥ 0, if I ⊂ k[x1, . . . , xn] is a proper ideal, then Vkmax(I) 6= ∅;
(3) for all n ≥ 0, if m ⊂ k[x1, . . . , xn] is a maximal ideal, then for suit-

able a1, . . . , an ∈ k we have m = (x1 − a1, . . . , xn − an); in other words

Speckmax(k[x1, . . . , xn]) = Specmax(k[x1, . . . , xn]);

(4) for all n ≥ 0, if I ⊆ k[x1, . . . , xn] is an ideal, then
√
I = I(Vkmax(I)).

Observe that non-zero polynomials of degree ≥ 1 in k[t] are precisely the non-
invertible elements in k[t]. This immediately tells us that (1) is equivalent to (2)
for n = 1: an proper ideal in k[t] is the principal ideal generated by a non-invertible

P ∈ k[t], and for a ∈ k = Speckmax(k[t]) we have a ∈ Vkmax((P )) if and only if
P∗(a) = 0.
We also observe that (3) implies (2): if I is proper, we can include it into a maximal
ideal m ⊂ k[x1, . . . , xn], which assuming (3) has the form (x1 − a1, . . . , xn − an):
then at least the point (a1, . . . , an) ∈ kn lies in Vkmax(I), which is therefore non-
empty. Similarly, (4) implies (2): if I is an ideal with V(I) = ∅, then I(V(I)) =

I(∅) = k[x1, . . . , xn], and assuming (4) we would have
√
I = k[x1, . . . , xn] 3 1,

implying that a power of 1 is in I, so I = k[x1, . . . , xn] and I is not proper.
For the other implications more work is needed! The rest of the proof of Theorem
15.4 is the content of the rest of the section.

15.1. Noether normalisation lemma. The standard proof of the Nullstellensatz
goes through the Noether normalisation lemma, stating that each k-algebra of finite
type is a finite extension of a polynomial ring.

Lemma 15.5 (Noether normalisation lemma). Let k be a field and let R be a
non-zero finitely generated k-algebra. Then there is m ≥ 0 for which there is an
injective, finite k-algebra homomorphism f : k[y1, . . . , ym] ↪→ R.
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The idea of the proof is the following. The hypothesis allows us to identify R as a
k-algebra with one of the form k[x1, . . . , xn]/I for some n ≥ 0 and some ideal I. If
we are lucky, then there is 0 ≤ m ≤ n such that the natural map k[x1, . . . , xm] →
k[x1, . . . , xn]/I is injective and finite; if we are not lucky... this will be true after
taking a “change of variables”: we can pick polynomials Pi ∈ k[x1, . . . , xn] for
1 ≤ i ≤ n, such that the induced k-algebra homomorphism g : k[x1, . . . , xn] →
k[x1, . . . , xn] sending xi 7→ Pi is bijective (we will discuss later how to ensure this
by cleverly choosing Pi). The image of the ideal I is a new ideal g(I) ⊂ k[x1, . . . , xn],
and we can equivalently study the finitely generated k-algebra k[x1, . . . , xn]/g(I):
if we are lucky, this new quotient satisfies that the natural map k[x1, . . . , xm] →
k[x1, . . . , xn]/g(I) is injective and finite.
It is in general hard to say a priori, given a sequence P1, . . . , Pn ∈ k[x1, . . . , xn]
of polynomials, whether the induced k-algebra homomorphism g : k[x1, . . . , xn] →
k[x1, . . . , xn] is bijective or not. However, if we fix natural numbers e1, . . . , en−1,
then the k-algebra homomorphism

ge1,...,en−1 : k[x1, . . . , xn]→ k[x1, . . . , xn], xi 7→ xi+x
ei
n ∀1 ≤ i ≤ n−1, xn 7→ xn

is indeed bijective, with inverse given by the homomorphism

g−e1,...,en−1
: k[x1, . . . , xn]→ k[x1, . . . , xn], xi 7→ xi−xein ∀1 ≤ i ≤ n−1, xn 7→ xn

Lemma 15.6. Let P ∈ k[x1, . . . , xn] be a non-zero polynomial. Then there are
e1, . . . , en−1 and there is λ ∈ k× such that λ·ge1,...,en−1

(P ) is monic when considered
as a polynomial in xn with coefficients in k[x1, . . . , xn−1].

Proof. The polynomial P can be written as a finite sum
∑r
i=1 cix

αi , where r ≥ 1,

ci ∈ k×, αi = (αi(1), . . . , αi(n)) ∈ Nn and we abbreviate xαi = x
αi(1)
1 . . . x

αi(n)
n . We

may assume that α1 is the maximum among the αi with respect to the lexicographic
order on Nn: concretely this means that for all i ≥ 2, if 1 ≤ j ≤ n is minimal with
α1(j) 6= αi(j), then α1(j) > αi(j).
Let N be a natural number which is larger than

∑r
i=1

∑n
j=1 αi(j), and consider the

k-algebra automorphism g = ge1,...,en−1
of k[x1, . . . , xn] induced by the sequence

ei = Nn−i, for 1 ≤ i ≤ n − 1. We claim that 1
c1
g(P ) is monic in xn, and it has

degree in xn precisely equal to d1 :=
∑n
j=1 α1(j)Nn−j . To see this, write

g(P ) =

r∑
i=1

ci

n−1∏
j=1

(
xj + xN

n−i

n

)αi(j)

xαi(n)
n .

Then the degree in xn of the ith summand is di :=
∑n
j=1 αi(j)N

n−j , as can be

seen by selecting in each binomial xj + xN
n−i

n the power of xn rather than xj . By
choice of N , each αi(j) is strictly smaller than N , so we can interpret the previous
expression as the base-N -expansion of the natural number di; the lexicographic
maximality of α1 now implies that d1 > di for any i ≥ 2; so the first summand
dictates the degree in xn of g(P ), which is d1, and also what is the coefficient of
xd1n in g(P ), namely c1. �

Proof or Lemma 15.5. By hypothesis we can identify the finitely generated k-algebra
R with a quotient algebra k[x1, . . . , xn]/I for some n ≥ 0 and some ideal I ⊂
k[x1, . . . , xn]; there are a priori several possible choices of n and of I. We proceed
by induction on n, showing the following statement, depending on n:
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If I ⊂ k[x1, . . . , xn] is an ideal, then there is 0 ≤ m ≤ n and a
finite injective k-algebra map f : k[y1, . . . , ym] ↪→ k[x1, . . . , xn]/I.

For n = 0 we have the only case I = (0) ⊂ k = k[ ], so k[ ]/I is already finite over
k, and we take m = 0.
Let now n ≥ 1; and let I ⊂ k[x1, . . . , xn]; if I = (0) we can again take m = n and
consider the bijective map k[y1, . . . , yn] ∼= k[x1, . . . , xn] sending yi 7→ xi. Let us
now assume that I 6= 0, and let P ∈ I be a non-zero element. If P is not monic
in xn when considered as a polynomial with coefficients in k[x1, . . . , xn], then we
may choose an automorphism g of k[x1, . . . , xn] and λ ∈ k× as in Lemma 15.6, so
that λg(P ) is monic in xn; up to replacing P by P

λ ∈ I, we may then assume that
g(P ) is already monic in xn. Moreover g induces an isomorphism of k-algebras
ḡ : k[x1, . . . , xn]/I ∼= k[x1, . . . , xn]/g(I), so we may as well prove the existence of an
injective finite k-algebra map f ′ : k[y1, . . . , ym] → k[x1, . . . , xn]/g(I), and then set
f = ḡ−1 ◦ f ′.
So we may assume that P is already monic in xn. Let then I ′ = I∩k[x1, . . . , xn−1];
then the map h : k[x1, . . . , xn−1]/I ′ → k[x1, . . . , xn]/I is injective and finite (indeed
the powers of xn up to degxn

P suffice to generate k[x1, . . . , xn]/I as a module over
k[x1, . . . , xn−1]/I ′). By inductive hypothesis we can find 0 ≤ m ≤ n − 1 and an
injective, finite map of k-algebras f ′ : k[y1, . . . , ym] → k[x1, . . . , xn−1]/I ′; we then
take f = h ◦ f ′. �

Recall that Spec(k[x1, . . . , xn]) contains kn as a subset in a natural way; then the
automorphism ge1,...,en considered in Lemma 15.6 induces a homeomorphism of
Spec(k[x1, . . . , xn]) which restricts to the bijection kn → kn sending (a1, . . . , an) 7→
(a1 + ae1n , a2 + ae2n , . . . , an). This bijection is not as nice as a linear automorphism
of kn; when k is infinite, in fact, there is an alternative proof of Lemma 15.5 using
only “linear” change of variable automorphisms of k[x1, . . . , xn] (i.e. each xi is sent
to a homogeneous polynomial of degree 1).

Exercise 15.7. Carry out the alternative proof of Lemma 15.5 when k is infinite,
by proving the following statements:

• if P ∈ k[x1, . . . , xn] is a non-zero, homogeneous polynomial of total degree
d ≥ 0, then there are a1, . . . , an−1 ∈ k with P∗(a1, . . . , 1) 6= 0;
• if P ∈ k[x1, . . . , xn] is a non-zero polynomial, then there are a1, . . . , an−1 ∈
k such that the automorphism g of k[x1, . . . , xn] sending xi 7→ xi + aixn
for 1 ≤ i ≤ n− 1 and xn 7→ xn sends P to a polynomial g(P ) which, up to
multiplying by an element in k×, is monic in xn.

15.2. Maximal ideals and residue fields in finitely generated algebras. An
immediate application of Lemma 15.5 is the following.

Lemma 15.8 (Zariski lemma). Let k ↪→ K be an extension of fields (i.e. a ring
homomorphism between fields). Then K is finite over k if and only if it is of finite
type over k.

Proof. If K is finite over k, then it is also of finite type. Assume now that K is
of finite type over k. By Lemma 15.5 we have that there is an injective, finite
k-algebra homomorphism k[y1, . . . , ym] ↪→ K for some m ≥ 0; by Example 13.15
we then have that k[y1, . . . , ym] is a field, and this clearly implies m = 0. �

In Definition 5.16 we introduced the notion of residue field. A corollary of Lemma
15.8 is the following.
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Corollary 15.9. Let k be a field and let R be a non-zero finitely generated k-
algebra; then for every maximal ideal m ⊂ R, the residue field R/m is finite over
k.

Proof. By Corollary 13.21, the composite map k → R → R/m is a field extension
of finite type. By Lemma 15.8 we obtain that R/m is finite over k. �

We can use Corollary 15.8 to prove that (1) implies (3) in Theorem 15.4: if
m ⊂ k[x1, . . . , xn] is a maximal ideal, then the composite ring homomorphism
k → k[x1, . . . , xn] → k[x1, . . . , xn]/m is a finite extension of k which is again a
field ; assuming k algebraically closed, this implies that k → k[x1, . . . , xn]/m is an
isomorphism. In particular, for each 1 ≤ i ≤ n, the class [xi]m is the image of some
element ai ∈ k; we then have xi − ai ∈ m, so that (x1 − a1, . . . , xn − an) ⊆ m, and
by maximality of both ideals we must have an equality.

15.3. Radical ideals and zero loci. So far we have proved that (1), (2) and (3)
are equivalent and implied by (4) in Theorem 15.4. We will now prove that (3)
implies (4) as well; this will follow almost immediately from the following, general
proposition.

Proposition 15.10. Let k be a field and let R be a k-algebra of finite type. Then
we have

√
I = I(Vmax(I)).

Proof. Recall from Proposition 3.19 that
√
I is the intersection of all prime ideals

in R containing I; in the light of Notation 15.3, we have
√
I = I(V(I)). Since

Vmax(I) ⊆ V(I), we have
√
I = I(V(I)) ⊆ I(Vmax(I)).

Let now a ∈ R \
√
I, let T =

{
1, a, a2, . . .

}
⊂ R, and consider the localisation

τ : R → RT ; we immediately observe that RT is of finite type over R, as it is
generated by 1

a as an R-algebra. By Corollary 13.21 we have that RT is also of
finite type over k.
Since T ∩ I = ∅, by Lemma 5.1 we have that the extended ideal Ie ⊂ RT is a
proper ideal; as such it is contained in a maximal ideal m ⊂ RT ; the preimage
p := mc ⊂ R is a prime ideal containing I. We can consider the composition of ring
homomorphisms k → R/p→ RT /n. Both morphisms and their composition are of
finite type, and in particular the field RT /n is a field extension of k of finite type
over k; by Lemma 15.8 we have that RT /n is finite over k, and a fortiori RT /n is
finite also over the domain R/p; it follows from Example 13.15 that R/p is in fact
a field, that is p ⊂ R is in fact maximal. Since τ(a) is invertible and τ(p) ⊂ m,
we have a /∈ p; thus a /∈ I(Vmax(I)), as the latter is the intersection of all maximal
ideals of R containing I, and p is one of them. �

Recall that (3) in Theorem 15.4 is the requirement that for all n ≥ 0 one has

Speckmax(k[x1, . . . , xn]) = Specmax(k[x1, . . . , xn]); under this assumption, by Propo-

sition 15.10 we immediately have
√
I = I(Vmax(I)) = I(Vkmax(I)), which is (4).

A particular case of Proposition 15.10 is the following: taking I = (0), we obtain
that the Jacobson ideal J(R) of a finitely generated k-algebra R, introduced in

Definition 3.20, coincides with the nilradical
√

(0).

16. Artin-Rees lemma and Krull intersection theorem

It is well-known that the only integer n ∈ Z which is a multiple of 2m for all m ≥ 0
is zero. In the language of ideals in rings, we have

⋂
m≥0(2)m = 0, where we take
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a descending intersection. This observation turns out useful in concrete situation
by rephrasing it as the following principle: if n 6= 0 ∈ Z, then there is a value of m
such that 2m | n but 2m+1 - m.10 Is it a general phenomenon that the (descending)
intersection of all powers of a proper ideal I in a ring R is zero?11 As shown in
Example 8.4, the ring R = k[x]/(x2 − x) has a proper ideal I = ([x]) such that
Im = I for all m ≥ 0, so in general we cannot expect this. Krull intersection
theorem provides a criterion for when this holds.

Theorem 16.1 (Krull intersection theorem). Let R be a Noetherian ring and let
I ⊆ J(R) ⊂ R be an ideal contained in the Jacobson ideal (see Definition 3.20),
and let M be a finitely generated R-module. Then⋂

i≥0

IiM = 0.

The proof of Theorem 16.1 will be based on the Artin-Rees lemma; we will prove
this other remarkable result first, then prove Theorem 16.1, and finally give a first
application, which will be needed in the general study of dimensions of Noetherian
rings.

16.1. Ther Artin-Rees lemma. Before stating the Artin-Rees lemma, it is con-
venient to introduce a few definitions.

Definition 16.2. Let R be a ring, I ⊆ R an ideal and M an R-module. An
I-filtration on M is a descending sequence of sub-R-modules

M = M0 ⊇M1 ⊇M2 ⊇ . . .

such that M = M0 and such that IMi ⊆Mi+1 for i ≥ 0.
An I-filtration is I-stable if there is ī such that Mi+1 = IMi for all i ≥ ī.

For example, given R, I,M as in Definition 16.2, one can set Mi = IiM : then one
gets an I-stable I-filtration on M ; clearly one could also just set Mi = M for all i:
this gives an I-filtration on M , which is often not I-stable.
Observe also that if (Mi)i≥0 is an I-filtration of the R-module M , then for all
i, j ≥ 0 we have IjMi ⊆Mi+j .

Example 16.3. Let R, I,M as in Definition 16.2 and let N ⊆ M be a sub-R-
module. Given an I-filtration (Mi)i≥0 of M , we can define an I-filtration (Ni)i≥0

of N by setting Ni := N ∩Mi.
If (Mi)i≥0 is I-stable, then (Ni)≥0 as above is not necessarily I-stable. For instance,
let R = Z, I = (2), M = Z[x] and let N ⊂M be the sub-Z-module spanned by the
elements 2nxn, for varying n ≥ 0; let Mi = (2)iM , so that (Mi)i≥0 is (2)-stable;

then (2i)M ∩N is spanned over Z by the elements 2max(i,n)xn, and (2i+1)M ∩N
is strictly larger than (2)

(
(2i)M ∩N

)
, as it contains the element 2i+1xn+1 (which

is in N , but is not divisible by 2 in N).

The Artin-Rees lemma is essentially the statement that what goes wrong in Exam-
ple 16.3 is that M is not finitely generated.

10One says that “2m exactly divides m”, or that “m is the 2-adic evaluation of n”.
11If I = R, the conclusion clearly fails unless R is the zero ring!
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Lemma 16.4 (Artin-Rees). Let R be a Noetherian ring, let I ⊆ R be an ideal, let
M be a finitely generated R-module and let N ⊆M be a sub-R-module. Then there
is ī ≥ 0 such that for all i ≥ ī we have an equality

IiM ∩N = Ii−ī(IiM ∩N).

In particular the I-filtration (IiM)i≥0 on M restricts to a stable I-filtration on N .

Lemma 16.4 is a clever application of Theorem 7.12; let us see how.

Definition 16.5. Let R be a ring and I ⊆ R be an ideal. We definte R[Ix] ⊆ R[x]
as the sub-R-algebra containing all polynomials P = anx

n + · · · + a0 such that
ai ∈ Ii for all i ≥ 0. Using that I is an ideal, and using the very definition of
powers Ii of an ideal I, we obtain that R[Ix] is indeed a subring of R[x], containing
R (by convention I0 = R).

Lemma 16.6. If R is Noetherian and I ⊆ R is an ideal, then R[Ix] is again
Noetherian.

Proof. Let a1, . . . , an be generators for I; then the R-algebra homomorphism

R[y1, . . . , yn]→ R[Ix]

sending yi 7→ aix is surjective; the ring R[y1, . . . , yn] is Noetherian by Theorem
7.12, and hence also its quotient R[Ix] is Noetherian. �

The importance of Definition 16.5 is that an R-module with an I-filtration gives
rise to an R[Ix]-module as follows.

Definition 16.7. Let R be a ring, I ⊆ R be an ideal, and M an R-module with an
I-filtration (Mi)i≥0. We define an R[Ix]-module structure on the direct sum M• :=⊕

i≥0Mi. Given an element m in the summand Mi ⊂ M• and given a monomial

axj ∈ R[Ix], with a ∈ Ij , we let axj · m be the element am ∈ IjMi ⊆ Mi+j ,
considered as an element in the summand Mi+j ⊆ M•. This assignment extends
to a R-bilinear map R[Ix]⊗RM• →M•, making M• into a R[Ix]-module.

Exercise 16.8. Prove the last statement of Definition 16.7, i.e. prove that Defini-
tion 16.7 is a good definition of an R[Ix]-module structure on M•.

In the light of Definitions 16.5 and 16.7, it is particularly easy to characterise I-
stable filtrations in the context of finitely generated modules over a Noetherian
ring.

Proposition 16.9. Let R be a Noetherian ring, I ⊆ R an ideal and M a finitely
generated R-module. Let (Mi)i≥0 be an I-filtration on M . Then the following are
equivalent:

(1) (Mi)i≥0 is an I-stable I-filtration;
(2) the R[Ix]-module M• constructed in Definition 16.7 is finitely generated.

Proof. Assume first that (Mi)i≥0 is I-stable, and let ī ≥ 0 be such that IMi = Mi+1

for i ≥ ī. We claim that the direct sum
⊕ī

j=1Mj generates M• as an R[Ix]-module.
A generic element in M• decomposes as a finite sum of elements contained in a single
summand Mi, so it suffices to prove that for all i ≥ 0 and all m ∈Mi, we can write

m as an R[Ix]-linear combination of elements in
⊕ī

j=1Mj ; if i ≤ ī this is obvious,

and if i > ī we can use the hypothesis and write m ∈ Mi ⊆ M as an I-linear
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combination of elements of Mi−1 ⊆M ; the same linear combination, multiplied by
x, exhibits m ∈ Mi ⊂ M• as an R[Ix]-linear combination of elements in Mi−1; we
conclude by an easy inductive argument.

Hence
⊕ī

j=1Mj generates the entire M• over R[Ix]; since R is Noetherian and M

is finitely generated over R, every Mj , for 0 ≤ j ≤ ī is finitely generated over R;
choosing finitely many generators for each Mj , and interpreting them as elements
of M•, we obtain a finite generating set of M• over R[Ix].

Assume now that the R[Ix]-module M• is finitely generated; then there is in partic-

ular ī ≥ 0 such that
⊕ī

j=1Mj generates M• over R[Ix]. Let i > ī and let m ∈Mi;

then we can find indices 0 ≤ j1, . . . , jn ≤ ī (possibly non-distinct), a sequence of
elements m1, . . . ,mn with ml ∈Mjl and polynomials P1, . . . , Pn ∈ R[Ix] such that
m =

∑n
l=1 Pimi. Up to replacing each Pl with its homogeneous part of degree i−jl,

we can assume that Pl = alx
i−jl for some al ∈ Ii−jl ; notice that i − jl ≥ 1, as we

assume i > ī ≥ jl. Moreover each al can be written as a sum of products of the
form bl,1 . . . bl,i−jl , with bl,1, . . . , bl,i−jl ∈ I; up to repeating each ml several times,
we may assume that each al has the form of a single product bl,1 . . . bl,i−jl . We can
then write

m =

n∑
l=1

bl,1 · (bl,2 . . . bl,i−jlml) ,

and since each term in the parenthesis belongs to Mi−1, we obtain that m ∈ IMi−1.
�

Proof of Lemma 16.4. The I-filtration (IiM)i≥0 on M is I-stable, hence by Propo-
sition 16.9 the associated R[Ix]-module M• is finitely generated. We can consider
on N the I-filtration (IiM ∩ N)i≥0, and the associated R[Ix]-module N• can be
identified with a sub-R[Ix]-module of M•; by Lemma 16.6 we then have that N•
is finitely generated over R[Ix], and by Proposition 16.9 this implies that the I-
filtration (IiM ∩N)i≥0 on N is I-stable. In other words, there is ī ≥ 0 such that
for i ≥ ī we have I(IM ∩N) = Ii+1M ∩N , and this is equivalent to saying that for

i ≥ ī we have IiM ∩N = Ii−ī(I īM ∩N). �

16.2. Proof of Krull intersection theorem and an application. Once Lemma
16.4 has been proved, the proof of Theorem 16.1 becomes quite immediate.

Proof of Theorem 16.1. Consider the sub-R-module N :=
⋂
i≥0 I

iM ⊆M : Lemma

16.4 implies that there is ī such that for all i ≥ ī we have a chain of inclusions

N = IiM ∩N = Ii−ī(I īM ∩N) ⊆ Ii−īN ⊆ N
and thus setting i = ī + 1 we obtain N = IN . We can now apply Lemma 14.10
(using again that R is Noetherian and N is finitely generated) to find a ∈ R with
[a]I = [1]I and aN = 0. The hypothesis I ⊆ J(R) implies that a ∈ R× by Lemma
3.21, and thus we have N = 0 as desired. �

Example 16.10. A particular application of Theorem 16.1 is the following: if R
is a Noetherian local ring with maximal ideal m, then J(R) = m and thus for any
finitely generated R-module M we have

⋂
n≥0 m

iM = 0.
An application of the previous remark is the following: if R is a Noetherian domain
(not necessarily local!) and m is a maximal ideal of R, then

⋂
i≥0 m

i = 0. To see
this, observe that the localisation map R ↪→ Rm is injective, and it restricts for all i
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to an injection mi ↪→ miRm, and eventually to an injection
⋂
i≥0 m

i ↪→
⋂
i≥0 m

iRm.
The ring Rm is local Noetherian with maximal ideal mRm, so we have by the above
remark that

⋂
i≥0(mRm)i =

⋂
i≥0 m

iRm = 0.
We can of course also take any proper ideal I in a Noetherian domain R, and still
obtain

⋂
i≥0 I

i = 0 by including I in a maximal ideal m and running the previous
argument. This generalises the observation about multiples of powers of 2 in Z at
the beginning of the section.

As a final application of Theorem 16.1, which will be needed when studying dimen-
sions of Noetherian rings, we prove the following lemma, preceeded by a definition.

Definition 16.11. Let R be a ring, p ∈ Spec(R) a prime ideal, and n ≥ 1.
Consider extensions and contractions of ideals with respect to the localisation map
τ : R→ Rp. We denote by p(n) the ideal ((pn)e)c ⊆ R, i.e. τ−1((τ(pn))); it is called
the nth symbolic power of p, and it contains pn.

Lemma 16.12. Let R be a Noetherian ring and let p ⊂ R be a prime ideal; let
τ : R→ Rp be the localisation map. Then

ker(τ) =
⋂
i≥0

p(i)

Proof. Let m = pe = pRp denote the maximal ideal of Rp, and note that for i ≥ 0
we have that the ideal (pi)e = piRp coincides with mi. Since Rp is local Noetherian
we have by Theorem 16.1 that

⋂
i≥0 m

i = 0. We can then write

ker(τ) = τ−1({0}) = τ−1

⋂
i≥0

mi

 =
⋂
i≥0

τ−1(mi) =
⋂
i≥0

p(i).

�

Exercise 16.13. The ideals p(i) as in Definition 16.11 show up also when consid-
ering primary decompositions.

• Prove that p(i) is a p-primary ideal (Hint: use Lemma 8.11 and that preim-
ages of primary ideals are again primary).
• Prove that p is the only element in Ass′(pi), and that every minimal primary

decomposition of pi has precisely p(i) as p-primary factor.12

Beware: in general pi is not itself primary, and Ass(pi) may contain other (neces-
sarily embedded) prime ideals.

17. Krull dimension theorem

Recall from Definition 9.2 that every ring R has a numerical invariant, dim(R) ∈
N ∪ {∞}, called the dimension of the ring. We also saw that the Noetherian rings
of dimension 0 are precisely the Artinian rings. In this and the following section
we ask ourselves, in great generality, how to compute the dimension of a generic
ring. The combination of Corollaries 14.5 and 14.7 also shows that if f : R ↪→ S is
an injective, integral ring homomorphism, then dim(R) = dim(S).

12This is an instance of a more general fact, that we didn’t prove: if I is an ideal in a ring that

admits a primary decomposition, then for each p ∈ Ass′(I) the p-primary factor of each minimal
primary decomposition is the same for all such decompositions, and it agrees with (Ie)c, where

extension and contraction are relative to the localisation map τ : R→ Rp.
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Example 17.1. Let k be a field and letR be a finitely generated k-algebra. Then by
Lemma 15.5 there exists an injective, integral ring homomorphism k[y1, . . . , ym] ↪→
R. We then have that dim(R) = dim(k[y1, . . . , ym], so the computation of dimen-
sions of finitely generated k-algebras reduces to the computation of dimensions of
finitely generated polynomial rings over k.
We will moreover see later that dim(k[y1, . . . , ym]) = m; thus the number m ≥ 0
making the statement of Lemma 15.5 hold true for R only depends on R, and it is
equal to dim(R).

Exercise 17.2. Let R,S be rings; prove that dim(R×S) = max {dim(R),dim(S)}.

The Krull dimension theorem will give us means to bound from above the dimension
of a ring, using knowledge about how many generators are actually needed to gen-
erate its ideals; as the latter condition suggests, the applicability will be restricted
to Noetherian rings.

17.1. Height and coheight. To give the statement of Krull dimension theorem,
let us introduce the notion of height, together with the “dual” notion of coheight.

Definition 17.3. Let R be a ring.

• For a prime ideal p ⊂ R, we define the height of p as ht(p) := dim(Rp) ∈
N ∪ {∞}.
• For a generic proper ideal I ⊂ R, we define the height of I, denoted ht(I) ∈
N ∪ {∞}, as min {ht(p) | I ⊆ p ∈ Spec(R)}.
• For a proper ideal I ⊂ R we define the coheight of I, denoted coht(I) ∈
N ∪ {∞}, as dim(R/I).

The notions of height and coheight generalise that of dimension: for instance, for a
prime ideal p ⊂ R, we have that ht(p) is the supremum of lengths l ≥ 0 of proper
chains of prime ideals p0 ⊂ . . . pl = p ⊂ R ending with p, whereas coht(p) is the
supremum of lengths l ≥ 0 of proper chains of prime ideals p = p0 ⊂ . . . pl ⊂ R
beginning with p. This implies the inequality ht(p) + coht(p) ≤ dim(R), as the first
sum is the supremum of lengths of proper chains of prime ideals passing through p.

Exercise 17.4. Prove that for any I ⊂ R we have ht(I)+coht(I) ≤ dim(R) holds.

Observe also that coht({0}) = dim(R) and that if R is local with maximal ideal m,
then ht(m) = dim(R).

Theorem 17.5 (Krull dimension theorem). Let R be a Noetherian ring and let
I ⊂ R be an ideal. Suppose that I can be generated by r elements; then for every
p ∈ Ass′(I), i.e. for every minimal prime ideal lying over I, we have ht(p) ≤ r. In
particular we have ht(I) ≤ r.

A straigthforward consequence of Theorem 17.5 is that if R is a Noetherian ring
and I ⊂ R is an ideal, then ht(I) is finite. In particular, if R is a local Noetherian
ring with maximal ideal m, then dim(R) = ht(m) is finite.
In general it is not true that if R is a Noetherian ring, then dim(R) is finite! In
Subsection 17.3 we will discuss the famous example of Nagata.

17.2. Proof of Krull dimension theorem. The proof of Theorem 17.5 is a bit
technical and is preceeded by the following proposition.
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Proposition 17.6. Let R be a Noetherian domain and let a ∈ R be an element
which is neither 0 nor invertible. Let p ∈ Ass′((a)) be a minimal prime ideal
containing (a). Then ht(p) = 1.

Proof. The proper chain of prime ideals (0) ⊂ p shows that ht(p) ≥ 1. To prove
equality, we need to show that the only prime ideal properly contained in p is (0).
We can localise R at the prime ideal p: by doing so, we still have a Noetherian
domain Rp and we still have that a

1 is neither zero (for the localisation map is
injective, R being a domain) nor invertible (for a ∈ p is sent inside pRp along
the localisation map) in Rp; by Proposition 5.4 all prime ideals contained in p are
witnessed by prime ideals of Rp.
So it is no harm to replace R by Rp, or equivalently, assume that R is already a
local ring, that p is its maximal ideal, and that p is minimal among prime ideals
lying over (a). Under this extra assumption, we have that p is in fact the unique
prime ideal of R containing (a), for any other prime ideal (a) ⊆ p′ ⊂ R would be
contained in p, the unique maximal ideal of R, and thus would prevent p from being
a minimal prime ideal containing (a). It follows that R/(a) is a Noetherian ring
of dimension 0 (it has exactly one prime ideal), and by Theorem 9.1 we have that
R/(a) is Artinian; this has a consequence also for the ring R: every descending
chain of ideals of R that contain (a) stabilises.
Let now p0 ⊂ R be a prime ideal strictly contained in p; as observed above, a /∈ p0.

We can consider the descending chain of ideals Ii := p
(i)
0 +(a), where we consider the

ith symbolic power of p0, as in Definition 16.11. In particular, recall from Exercise

16.13 that p
(i)
0 is a p0-primary ideal. All ideals Ii contain (a), and so we can find

ī ≥ 0 such that for all i ≥ ī we have p
(i)
0 + (a) = p

(̄i)
0 + (a). Let us also assume

ī ≥ 1.

We claim that for all i ≥ ī we have p
(̄i)
0 = p

(i)
0 +ap

(̄i)
0 . The inclusion p

(̄i)
0 ⊇ p

(i)
0 +ap

(̄i)
0

is evident. For the other inclusion, let b ∈ p
(̄i)
0 ⊂ Iī; then b ∈ Ii so we can find

c ∈ p
(i)
0 ⊆ p

(̄i)
0 and d ∈ R with b = c + ad; it follows that b − c = ad ∈ p

(̄i)
0 ,

and since p
(̄i)
0 is p0-primary and a /∈ p0, we must have d ∈ p

(̄i)
0 ; this implies that

b ∈ p
(i)
0 + ap

(̄i)
0 , completing the proof of the claim.

Since a ∈ p, the equality p
(̄i)
0 = p

(i)
0 +ap

(̄i)
0 implies the equality p

(̄i)
0 = p

(i)
0 +pp

(̄i)
0 for

all i ≥ ī; we can now set M = p
(̄i)
0 and N = p

(i)
0 ⊆ N , and apply Corollary 14.12 to

conclude that p
(̄i)
0 = p

(i)
0 for all i ≥ ī.

And now it is time to invoke Lemma 16.12: the kernel of the localisation map

R→ Rp0
is trivial, since R is a domain, and hence

⋂
i≥0 p

(i)
0 = 0; by the above, the

previous intersection is equal to p
(̄i)
0 , which is therefore zero. Taking radicals, and

remembeding again that we are in a domain, we have p0 =

√
p

(̄i)
0 =

√
(0) = 0 as

desired. �

Proof of Theorem 17.5. We proceed by induction on the number r ≥ 0 of elements
used to generate I ⊆ R. For r = 0 we have I = (0), and any minimal prime ideal
p ⊂ R (i.e. any p ∈ Ass′(0)) has height 0.
Let now r ≥ 1 and let a1, . . . , ar ∈ I be generators of I. Let moreover p ∈ Ass′(I)
be a minimal prime ideal containing I; we want to prove that ht(p) ≤ r; for this
aim, let p0 ⊂ · · · ⊂ pt = p be a proper chain of prime ideals of some length t ≥ 0
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ending with p: the supremum of t for varying chain gives ht(p), and hence we want
to prove that t ≤ r.
For this aim, we can again replace R by Rp, replace I by IRp (which can be
generated by the r elements ai

1 ), and consider the proper chain of prime ideals
p0Rp ⊂ · · · ⊂ ptRp = pRp. We still want to prove the inequality t ≤ r. Just as in
the proof of Proposition 17.6, we will henceforth assume that R is already a local
ring with maximal ideal p, and that p is minimal among prime ideals containing I.
If t = 0, the inequality t ≤ r is evident, so let us assume t ≥ 1. We also want
to assume that there is no prime ideal q with pt−1 ⊂ q ⊂ p, i.e. pt−1 is maximal
among prime ideals strictly contained in p. To achieve this situation, we consider
the family Σ of all prime ideals q with pt−1 ⊆ q ⊂ p; since R is Noetherian we may
find a maximal q ∈ Σ, and then we may replace pt−1 by q in our original proper
chain of prime ideals. Henceforth we assume that there is no prime ideal strictly
between pt−1 and p.
Since p is minimal among prime ideals containing I, and since p is now assumed
maximal, we have that p is in fact the unique prime ideal of R containing I; in
particular I * pt−1. This has two interesting consequences: first, by Proposition

3.19 we have p =
√
I; second, at least one of the generators of I is not in pt−1, and

without loss of generality we may assume that ar /∈ pt−1.
Consider now the ideal J = (ar) + pt−1; then every prime ideal containing J is a
prime ideal strictly larger than pt−1, yet contained in the unique maximal ideal p:
by our assumption it follows that p is the unique prime ideal containing J , and in
particular

√
J = p. Since I ⊆ p, each generator ai of I admits a power in J ; in

particular there are exponents n1, . . . , nr−1 ≥ 0, elements a′1, . . . , a
′
r−1 ∈ pt−1 and

elements b1, . . . , br−1 ∈ R such that ani
i = a′i + bia.

Let now I ′ = (a′1, . . . , a
′
r−1); by construction I ′ can be generated by r−1 elements,

and it is contained in pt−1; moreover we have In ⊂ I ′+(ar) for n large enough, say

n =
∑r−1
i=1 ni (compare with Exercise 8.19). Let finally p′ be a minimal prime ideal

among the prime ideals containing I ′ and contained in pt−1 (the existence of such
p′ is guaranteed by the inclusion I ′ ⊆ pt−1); then we have a chain of inclusions

p =
√
I =
√
In ⊆

√
I ′ + (ar) ⊆

√
p′ + (ar) ⊆

√
pt−1 + (ar) ⊆ p

which has to be a chain of equalities. In particular we have that p is the unique
prime ideal containing p′ + (ar). Consider now the ring R/p′: it is a local domain
with maximal ideal p/p′, and it contains an element [ar]p′ which is neither zero
(for ar /∈ pt−1 ⊇ p′) nor a unit (for ar ∈ p, so [ar]p′ ∈ p/p′). By Proposition 17.6
evert minimal prime ideal in R/p′ that contains [ar]p′ has height 1: in fact p/p′

is the unique such prime ideal, yet we have a chain of inclusions of prime ideals
p′/p′ ⊆ pt−1/p

′ ⊂ p/p′. We conclude that the first inclusion must be an equality,
i.e. p′ = pt−1.
And now we may apply the inductive hypothesis: pt−1 = p′ is a minimal prime
ideal containing I ′, which is an ideal generated by r − 1 elements; it follows that
t− 1 ≤ ht(pt−1) = ht(p′) ≤ r − 1, finally proving that t ≤ r. �

We will see many applications of Theorem 17.5 in the next section.

17.3. The counterexample of Nagata. Let k be a field and let I ⊂ N2 be the set
of pairs (i, j) with i ≥ j ≥ 0. Consider the polynomial ring R = k[xi,j | (i, j) ∈ I];
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for each i ≥ 0 let pi ⊂ R be the prime ideal pi = (xi,1, xi,2, . . . , xi,i). Let T ⊂ R be
the complement in R of the union

⋃
i≥0 pi.

Lemma 17.7. The subset T ⊂ R is a multiplicative subset of R.

Proof. We have 1 ∈ T , as 1 belongs to no prime ideal; moreover if P,Q ∈ R are
polynomials belonging to T , then P,Q /∈ pi for all i ≥ 0, hence PQ /∈ pi for all
i ≥ 0, and thus PQ ∈ T . �

We now consider the ring RT ; we claim that this ring is Noetherian, and yet
dim(RT ) = ∞. The fact that dim(RT ) = ∞ is relatively easy: for each i ≥ 0
we can produce a proper chain of prime ideals of length i+ 1 in R by taking

(0) ⊂ (xi,0) ⊂ (xi,0, xi,1) ⊂ · · · ⊂ (xi,0, xi,1, . . . , xi,i−1) ⊂ pi;

all prime ideals in the chain are disjoint from T , and hence by Proposition 5.4 the
extended prime ideals form a chain of length i+ 1 in RT . Since i is arbitrary, this
shows that dim(RT ) =∞.
The difficult part is of course to prove that RT is Noetherian.

Lemma 17.8. Let Σ be the collection of ideals of R that are disjoing from T ;
then the prime ideals pi, for varying i ≥ 0, are precisely all maximal elements with
respect to inclusion in Σ.

Proof. We observe that P ∈ R does not belong to pi if and only if at least one
monomial of P is a product of an element of k× and variables xi′,j for varying
i′ 6= i and 0 ≤ j ≤ i′. In particular every polynomial in R with non-vanishing
constant term belongs to T .
We use this to prove that each pi is maximal among ideals that are disjoint from
T : indeed for any proper inclusion of ideals pi ⊂ I we can pick P ∈ I \ pi; then
P has at least one monomial containing only variables xi′,j with i′ 6= i; summing
a suitable k-multiple of xi,0 ∈ pi ⊂ I, we obtain that P ′ = P + λxi,0 ∈ I is a
polynomial with at least one monomial witnessing that P ′ /∈ pi, and at least one
monomial (the one we added) witnessing that P ′ /∈ pi′ for any i′ 6= i, i.e. P ′ ∈ T .
Conversely, let I ⊂ R be any ideal, and assume that I ∩ T = ∅; for any P ∈ I let
s(P ) ⊂ N be the subset of all i ≥ 0 such that P ∈ pi, and let s(I) = {s(P ) |P ∈ I}
be the family of all s(P ) for P ∈ I. We observe that s(I) consists of N = s(0) and
of finite subsets, as each 0 6= P ∈ I has at least a non-trivial monomial, containing
finitely many variables and thus witnessing that P /∈ pi for almost all i ≥ 0. The
hypothesis I ∩ T = ∅ implies that ∅ /∈ s(I). Moreover, if P, P ′ ∈ I are polynomials,
we can find an exponent e ≥ 0 such that the sum of the elements P e and P ′ has
no cancellation among monomials of P e and monomials of P ′ (here we use that
P has vanishing constant term), so that s(P e + P ′) = s(P ) ∩ s(P ′). This implies
that s(I) has a unique minimal element with respect to inclusion: if I = {0},
then s(I) = {N} so N is the unique minimal element; otherwise s(I) contains some
finite set and there is a unique set of minimal cardinality, which is also the unique
minimum of s(I) with respect to inclusion.
This minimum is non-empty, and this shows that there is i ≥ 0 such that each s(P )
contains i, i.e. P ∈ pi for all P ∈ I. �

Applying Lemma 5.1 and Proposition 5.4, we obtain that the extended ideals mi :=
pei = piRT ⊂ RT are precisely all maximal ideals of RT . We also observe that the
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localisations (RT )mi
coincide with Rpi

, and we have

(RT )mi
∼= Rpi

∼= k(xi′,j | (i′, j) ∈ I, i′ 6= i)[xi0 , xi,1, . . . , xi,i](xi0 ,xi,1,...,xi,i);

The latter is a Noetherian ring: indeed k(xi′,j | (i′, j) ∈ I, i′ 6= i) is a field, and
we are taking a localisation of a finitely generated algebra over this field, which is
Noetherian by Theorem 7.12 and Lemma 7.6.
Of course we remember Exercise 7.11, so we are not tempted to conclude that RT
is Noetherian just because all of its localisations at maximal ideals are Noetherian.
So let I0 ⊆ I1 ⊆ I2 ⊆ . . . be an ascending chain of ideals in RT ; without loss of
generality, we can assum I0 6= {0}, and pick 0 6= P ∈ I0; then the set s(P ), as in
the proof of Lemma 17.8, is finite.
For each i ∈ s(P ) we can identify the ascending chain of extended ideals I0(RT )mi

⊆
I1(RT )mi ⊆ . . . with the ascending chain of (RT )mi-modules (I0)mi ⊆ (I1)mi ⊆ . . . ;
since (RT )mi is Noetherian, this sequence stabilises, i.e. there is j̄i ≥ 0 such that
for each j ≥ j̄i the inclusion Ij̄i ⊆ Ij becomes a bijection (Ij̄i)mi

∼= (Ij)mi
after

localisation.
Let now j̄ = max j̄i | i ∈ s(P ): we claim that for all j ≥ j̄ the inclusion Ij̄ ⊆ Ij
is... surjective, that is it is a bijection; we can check this after localisation at all
maximal ideals of RT , thanks to Corollary 6.11. For i ∈ s(P ) this is immediate, by
how we defined j̄. For i /∈ s(P ) the situation is even better: the chain of inclusions
Ij̄ ⊆ Ij ⊆ RT becomes a chain of bijections after localisation at mi, since P /∈ mi
but P ∈ Ij̄ ; here we appeal to Lemma 5.1.

18. Applications of Krull dimension theorem

In this last section we see some applications of the Krull dimension theorem.

18.1. Bound on dimension of local rings. The first immediate consequence of
Theorem 17.5 is that every ideal I in a Noetherian ring R has finite height: already
this simple statement is not completely obvious before proving Theorem 17.5. In
the case of a local ring we obtain the following.

Corollary 18.1. Let R be a Noetherian local ring with maximal ideal m. Then
dim(R) ≤ dimR/m(m/m2). In particular dim(R) is finite.

Proof. Corollary 14.13 implies that m can be generated by dimR/m(m/m2)-many
elements, and the statement follows by applying Theorem 17.5 to the ideal m, using
that ht(m) = dim(R). �

Already the fact that the dimension of a Noetherian local ring is finite is not com-
pletely obvious a priori: the example of Nagata from Subsection 17.3 shows that
(non-local) Noetherian rings may have infinite dimension.

Example 18.2. In general, for a local Noetherian ring R with maximal ideal
m, we may have dim(R) < dimR/m(m/m2). For instance let k be a field and

let R = k[x2, x3](x2,x3). Then the maximal ideal (x2, x3) of k[x2, x3] cannot be

generated by less than 2 elements, and similarly the extended ideal (x2, x3) of R
needs at least two generators. To prove this formally, use Corollary 14.13 and notice
that (x2, x3)/(x2, x3)2 is 2-dimensional over R/(x2, x3), generated by the vectors
[x2] and [x3].
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Yet dim(R) = 1, since the normalisation of R is k[x], which is a PID and has
therefore dimension 1, and dim(R) = dim(k[x]) by combining Corollaries 14.5 and
14.7.

Exercise 18.3. Let k be a field, let n ≥ 3 and let R = k[x1, . . . , xn]/(x2
1 + · · ·+x2

n).
Prove that dim(R) = n − 1, yet for the maximal ideal m = (x1, . . . , xn) ⊂ R we
have dimR/m(m/m2) = 0.

Example 18.2 and Exercise 18.3 motivate the following definition.

Definition 18.4. A local Noetherian ring R with maximal ideal m is regular if
dim(R) = dimR/m(m/m2); equivalently, using Corollary 14.13, if m can be generated
by exactly (i.e. no more than) dim(R)-many elements.

18.2. Krull principal ideal theorem. In the case of a principal ideal (a) ⊂ R,
Krull dimension theorem tells us that ht((a)) ≤ 1. The inequality can be strict (for
instance if a = 0), but under suitable assumptions on a we have an equality, as in
the following theorem.

Theorem 18.5 (Krull principal ideal theorem). Let R be a Noetherian ring and let
a ∈ R be an element which is neither invertible nor a zero-divisor. Then ht((a)) =
1.

Proof. We have to show that ht((a)) ≥ 1; the opposite statement is ht(a) = 0,
i.e. there is some prime ideal p ⊇ (a) with ht(p) = 0. We then have that p is a
minimal prime in the ring R, i.e. it is one of the prime ideals in Ass′((0)). Let

therefore Ass′((0)) = {p1, . . . , pr}, and assume p = p1. We have
√

(0) =
⋂r
i=1 pi,

and since R is Noetherian there is n ≥ 1 large enough so that (
⋂r
i=1 pi)

n = (0),
and hence also

∏r
i=1 p

n
i = 0. Now this implies that a is a zero-divisor: indeed the

product
∏r
i=2 p

n
i doesn’t vanish (otherwise p1 would not be in Ass′(0)), and there

is a minimal 1 ≤ j ≤ n with pj1
∏r
i=2 p

n
i = 0; then for any 0 6= b ∈ pj−1

1

∏r
i=2 p

n
i = 0

we have ab = 0. �

18.3. Parameters in a local ring. Let R be a Noetherian local ring with maximal
ideal m. From Example 18.2 and Exercise 18.3 we see that, in general, we cannot
expect that m be generated by only dim(R)-many elements. We can nevertheless
hope that equality in Krull dimension theorem holds at least for some other ideal
of R: in particular, if I ⊂ R is an m-primary ideal (which, by Lemma 8.11, is the

same as saying that I is such that
√
I = m), we can ask whether I can be generated

by ht(I)-many elements; and by the very definition of height, since m is the unique
prime ideal containing I, we have ht(I) = ht(m) = dim(R).

Definition 18.6. Let R be a Noetherian local ring with maximal ideal m. A set of
elements a1, . . . , ad ∈ m is called a system of parameters for R if d = dim(R) and
the ideal I := (a1, . . . , ad) is m-primary, i.e. m is the unique minimal prime ideal
lying over I, i.e. ht(I) = ht(m) = d.

We will see that every Noetherian local ring R admits a system of parameters; in
particular dim(R) is equal to the minimum number d ≥ 0 such that there is some
m-primary ideal generated by exactly d elements, where m is the maximal ideal of
R. This gives a new characterisation of the dimension of Noetherian local rings,
which was originally defined in terms of proper chains of prime ideals. In particular
we have the following, for a local Noetherian ring R:
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• for every m-primary ideal I = (a1, . . . , ar) and every proper chain of prime
ideals p0 ⊂ · · · ⊂ pl we have l ≤ r;
• for a suitable choice of I and of the chain of prime ideals, equality holds.

In particular one can prove that a given Noetherian local ring R has dimension
precisely d ≥ 0 by exhibiting an m-primary ideal generated by d elements and a
proper chain of prime ideals of length d.

Example 18.7. Let us prove again that dim(k[x2, x3](x2,x3) = 1: the chain of ideals

(0) ⊂ (x2, x3) has length 1, and the ideal (x2) is (x2, x3)-primary and is generated
by 1 element.

The existence of a system of parameters will follow from the following more general
proposition, which is a sort of converse of Theorem 17.5.

Proposition 18.8. Let R be a Noetherian ring, let I ⊂ R be an ideal, and let r :=
ht(I) (which is finite by Theorem 17.5). Let 1 ≤ s ≤ r and let a1, . . . , as−1 ∈ I be
elements such that ht((a1, . . . , as−1) = s−1 (the inequality ≥ always holds by Theo-
rem 17.5). Then there exists a further element as ∈ I such that ht((a1, . . . , as)) = s.
In particular, there are elements a1, . . . , ar ∈ I such that ht((a1, . . . , ar)) = r =
ht(I).

The proof of Proposition 18.8 is subject to the following basic lemma, which is a
counterpart to Lemma 8.3.

Lemma 18.9. Let R be a ring, I ⊂ R an ideal and p1, . . . , pn ∈ Spec(R) be prime
ideals, for some n ≥ 1. Assume that I is contained in the set

⋃n
i=1 pi (which is not

necessarily an ideal). Then there is 1 ≤ i ≤ n such that I ⊆ pi.

Proof. We proceed by induction over n. If n = 1 the statement is obvious. Assume
now n ≥ 2. If there exists an index 1 ≤ j ≤ n such that I ⊆

⋃
i 6=j pi, we may reduce

our collection of prime ideals and apply the inductive hypothesis to find an index
i 6= j such that I ⊆ pi.
Let us therefore assume that for all 1 ≤ j ≤ n we have I *

⋃
i 6=j pi, and find a

contradiction. We can pick elements aj ∈ I \
⋃
i 6=j pi, for 1 ≤ j ≤ n; we must have

aj ∈ pj . For all 1 ≤ l ≤ n we then have that the product bl :=
∏
j 6=l aj belongs to

I, belongs to pi for i 6= l, and doesn’t belong to pl. It follows that the sum
∑n
l=1 bl

is an element in I which doesn’t belong to any of the ideals pi. �

Proof of Proposition 18.8. Let Ass′((a1, . . . , as−1) = {p1, . . . , pn} be the set of min-
imal prime ideals lying over (a1, . . . , as−1). By Theorem 17.5 we have ht(pi) ≤ s−1,
and by the hypothesis ht((a1, . . . , as−1)) = s− 1 we have in fact ht(pi) = s− 1 for
all 1 ≤ i ≤ n. Since ht(I) = r > s− 1, we must have that I is not contained in any
of the prime ideals pi; it follows from Lemma 18.9 that I *

⋃n
i=1 pi, and so we may

pick an element as ∈ I \
⋃n
i=1 pi. Then every prime ideal p containing (a1, . . . , as)

is not one of the ideals p1, . . . , pn, yet since p ⊇ (a1, . . . , as−1) we have that p ⊇ pi
for some 1 ≤ i ≤ n, and this implies that ht(p) ≥ s, so that ht((a1, . . . , as)) ≥ s;
again by Theorem 17.5 we have ht((a1, . . . , as)) = s. �

Once Proposition 18.8 is proved, we can apply it to the case of a Noetherian local
ring R with maximal ideal m: if dim(R) = d ≥ 0, we can find elements a1, . . . , ad ∈
m such that the ideal I := (a1, . . . , ad) satisfies ht(I) = d; by definition of height
of an ideal, it follows that every prime ideal p containing I has height ≥ d; since
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p ⊆ m and ht(m) = dim(R) = d, we must have p = m, i.e. m is the unique prime

ideal containing I. It follows that
√
I = m, i.e. I is m-primary.

Corollary 18.10. Let R be a Noetherian local ring with maximal ideal m and let
a1, . . . , ar ∈ m. Then dim(R/(a1, . . . , ar)) ≥ dim(R)− r.

Proof. Let I = (a1, . . . , ar), and consider the ring R/I: it is again local, with
maximal ideal m/I, so we can find by Proposition 18.8 a system of parameters
[c1]I , . . . , [cs]I ∈ R/I, where s = dim(R/I). The ideal ([c1]I , . . . , [cs]I) is m/I-
primary, i.e. m/I is the only prime ideal lying over it; pulling back to R, we obtain
that the ideal (a1, . . . , ar, c1, . . . , cs) is m-primary, as m is the only prime ideal
containing it. It follows from Theorem 17.5 that r + s ≥ dim(R), i.e. dim(R/I) ≥
dim(R)− r. �

We can combine Theorem 18.5 and Corollary 18.10 to prove the following corollary.

Corollary 18.11. Let R be a Noetherian local ring with maximal ideal m, and let
a ∈ m. Then dim(R/(a)) = dim(R)− 1.

Proof. Theorem 18.5 implies that ht((a)) = 1, and the inequality ht((a))+coht((a)) ≤
dim(R) translates to dim(R/(a)) ≤ dim(R)− 1. Viceversa, Corollary 18.10 implies
that dim(R/(a)) ≥ dim(R)− 1. �

In fact, we can improve Proposition 18.8 to the following in the case of a local ring.

Proposition 18.12. Let R be a Noetherian local ring with maximal ideal m, and
let 0 ≤ r ≤ d := dim(R). Let a1, . . . , ar ∈ m. Then the following are equivalent:

(1) there exist ar+1, . . . , ad ∈ m such that a1, . . . , ad are a system of parameters
for R;

(2) dim(R/(a1, . . . , ar)) = d− r.

Proof. Assume first (1), let I = (a1, . . . , ar) and let q = (a1, . . . , ad), which is m-
primary; passing to the quotient by I, we have that q/I = ([ar+1]I , . . . , [ad]I) ⊂
R/I is a m/I-primary in the Noetherian local ring R/I; since q/I is generated
by d − r elements, we obtain dim(R/I) ≤ d − r by Theorem 17.5; the inequality
dim(R/I) ≥ d− r follows from Corollary 18.10.

Assume now (2), and let again I = (a1, . . . , ar). By Proposition 18.8 we can find
a system of parameters [cr+1]I , . . . , [cd]I ∈ m/I for R/I, and as in the proof of
Corollary 18.10 we have that q := (a1, . . . , ar, cr+1, . . . , cd) ⊂ R is an m-primary
ideal, as m is the only prime ideal containing it. By definition, this means that
a1, . . . , ar, cr+1, . . . , cd is a system of parameters for R. �

18.4. Dimension of polynomial rings. We can now compute the dimension of
polynomial rings over a generic ring.

Proposition 18.13. Let R be a Noetherian ring and let n ≥ 0. Then

dim(R[x1, . . . , xn]) = dim(R) + n.

Proof. For n = 0 there is nothing to prove. For n = 1, the inequality dim(R[x]) ≥
dim(R) + 1 was already proved in Example 9.4. For the other inequality, let m
be a maximal ideal of R[x] and let p = m ∩ R ∈ Spec(R); it suffices to prove
that ht(m) ≤ ht(p) + 1, where the two heights are computed with respect to the
two rings R[x] and R, respectively. We observe that the multiplicative subset
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T := R \ p ⊂ R ⊂ R[x] is disjoint from m, so we may replace R by RT = Rp,
replace R[x] by R[x]T ∼= Rp[x], replace m by the extended ideal mRp[x] (which is
again maximal and has same height as m), and replace similarly p by pRp (also
these two ideals have the same height in their respective rings). We may thus
assume that p is already maximal in R, and in fact we may assume that R is local
Noetherian with maximal ideal p.
Observe now that pR[x] is a prime ideal in R[x], as the quotient R[x]/pR[x] ∼=
R/p[x] is a domain. In fact, R/p is a field, and hence R/p[x] is a principal ideal
domain. It follows that the maximal ideal m/pR[x] ⊂ R/p[x] is a principal ideal,
generated by some class [P ]pR[x]; it further follows that m is generated by p ⊂ R
together with P ∈ R[x].
Since R is local Noetherian, by Proposition 18.8 there are elements a1, . . . , ad ∈ p,
with d = ht(p), such that (a1, . . . , ad) ⊂ R is a p-primary ideal, i.e. p is the only
prime ideal containing (a1, . . . , ad). Consider now a prime ideal q ⊂ R[x] containing
(a1, . . . , ad, P ): then q must intersect R in a prime ideal containing (a1, . . . , ad), i.e.
q ∩ R = p, and hence m = p + (P ) ⊆ q; by maximality of m we conclude q = m,
i.e. m is the only prime ideal containing (a1, . . . , ad, P ), which is thus m-primary.
By Theorem 17.5, since (a1, . . . , ad, P ) is generated by d + 1 elements, we obtain
ht(m) ≤ d+ 1.
The case n ≥ 2 follows by applying n times the case n = 1, using also Theorem
7.12 along the way. �

Example 18.14. Particular applications of Proposition 18.13 are the following:

• dim(Z[x1, . . . , xn]) = n+ 1, for all n ≥ 0;
• if k is a field, then dim(k[x1, . . . , xn]) = n; this completes the discussion

about dimensions of k-algebras of finite type started in Example 17.1.

Exercise 18.15. Give an alternative proof of the equality dim(k[x1, . . . , xn]) = n,
for k a field, as follows:

• in the case in which k is algebraically closed, prove that ht(m) ≤ n for every
m ∈ Specmax(k[x1, . . . , xn]) by combining Theorems 15.4 and 17.5;
• in the case in which k is not algebraically closed, let k̄ be an algebraic closure

of k, and consider the inclusion of rings k[x1, . . . , xn] ⊆ k̄[x1, . . . , xn]; prove
that it is an injective integral extension of domains, and use Corollaries
14.5 and 14.7 to conclude.

We can in fact analyze more closely the maximal ideals of polynomial rings over
any field: the following proposition is immediate for k algebraically closed, using
Theorem 15.4, but less obvious for generic k.

Proposition 18.16. Let k be a field and let m ∈ Specmax(k[x1, . . . , xn]) for some
n ≥ 0; then the following hold:

(1) m can be generated by n elements;
(2) ht(m) = n;
(3) the localisation k[x1, . . . , xn]m is a regular local ring, in the sense of Defi-

nition 18.4.

Proof. We start by proving (1) and (2) by induction on n ≥ 0. For n = 0
there is nothing to prove, as m = (0) ⊂ k. Let now n ≥ 1, and let p = m ∩
k[x1, . . . , xn−1]. Then the composition k ↪→ k[x1, . . . , xn−1]/p ↪→ k[x1, . . . , xn]/m
exhibits k[x1, . . . , xn]/m as an integral extension of k by Corollary 15.9; it follows
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that k[x1, . . . , xn]/m is also integral over the domain k[x1, . . . , xn−1]/p, which is
therefore a field by Example 13.15. Hence p is actually a maximal ideal, and we
may assume by inductive hypothesis that p is generated by n− 1 elements and has
height n− 1 in k[x1, . . . , xn−1].
Moreover the ideal m/p ⊂ (k[x1, . . . , xn−1]/p)[xn] is maximal, and since the ring
(k[x1, . . . , xn−1]/p)[xn] is a PID, we have that there is an element [P ]p ∈ k[x1, . . . , xn−1]/p)[xn]
generating m/p; it follows that m is generated by n elements, namely the n− 1 ele-
ments generating p together with P , proving (1). By Theorem 17.5 we immediately
obtain ht(m) ≤ n; conversely, if p0 ⊂ · · · ⊂ pn−1 = p ⊂ k[x1, . . . , xn−1] is a
proper chain of prime ideals witnessing that ht(p) = n − 1, then pik[x1, . . . , xn] ⊂
k[x1, . . . , xn] is a prime ideal which is not maximal, as the quotient is the ring
(k[x1, . . . , xn−1]/pi)[xn], which is a domain but not a field; all such ideals are thus
strictly contained in m, and witness that ht(m) ≥ n; this concludes the proof of (2).
Part (3) is then a direct consequence of (1) and (2) and the definitions of regu-
larity and height, together with the fact that the maximal ideal in k[x1, . . . , xn]m
is generated by the image of any system of generators of m under the localisation
map. �

18.5. Regular local rings are domains. We conclude with the following propo-
sition.

Proposition 18.17. Let R be a regular local Noetherian ring. Then R is a domain.

Proof. We denote by m the maximal ideal of R, and argue by induction on d :=
dim(R). The hypothesis says that m can be generated by d elements. For d = 0 we
hence have that m = (0), so that R is in fact a field, hence a domain.
Assume now d ≥ 1. Since R is regular, we can find a system of d generators
a1, . . . , ad for m. Let moreover p1, . . . , pr be the list of the minimal prime ideals of
R, i.e. the primes in Ass′(0).
We prove by induction on 0 ≤ t ≤ r that there exists an element bt of the form

bt = a1 +

d∑
i=2

ct,iai

such that bt /∈
⋃t
j=1 pj . For t = 0 we just take b0 = a1, and the last condition

is void. Let now t ≥ 1 and fix by inductive hypothesis an element bt−1 satisfying
the above property; if bt−1 /∈ pt we can just take bt = bt−1, so let us assume
bt−1 ∈ pt. By Lemma 8.3, using that none of p1, . . . , pt−1 is contained in pt, we can

find an element c ∈
⋂t−1
j=1 pj \ pt; the hypothesis c /∈ pt, together with the fact that

m * pt (for otherwise m = pt would be also a minimal prime ideal, implying that
dim(R) = 0), implies that cm * pt; since m can be generated using bt−1, a2, . . . , ad,
and since bt ∈ pt, we must have that caī /∈ pt for some 2 ≤ ī ≤ d. We can then set
bt := bt=1 + caī, which evidently is not contained in any of p1, . . . , pt.
In particular we may find an element b = br which is not contained in any of
the minimal primes p1, . . . , pr. Observe also that m = (b, a2, . . . , ad). We can
now consider the local ring R/(b): its maximal ideal m/(b) can be generated by
the d − 1 elements [a2]b, . . . , [ad]b, and moreover, since the set {a} extends to a
system of parameters for R, namely b, a2, . . . , ad, by Proposition 18.12 we have
dim(R/(b)) = d−1. Hence R/(b) is a regular local Noetherian ring, and by inductive
hypothesis it is a domain. This implies that the principal ideal (b) is in fact a prime
ideal.
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We next use that b is not contained in any minimal prime pi as follows. Let pī be a
minimal prime of R contained in the prime ideal (b). We claim that pī = bpī; one
inclusion follows from pī being an ideal; for the other inclusion, let c ∈ pī; then,
since pī ⊆ (b), there is d ∈ R with db = c; since b /∈ pī, we must have d ∈ pī as
desired. Since b ∈ m, we have in particular pī = mpī, and Corollary 14.11 implies
that pī = 0. We thus learn that (0) is a prime ideal, i.e. R is a domain. A posteriori,
we learn also that that r = 1, i.e. (0) was the unique minimal prime in R. �
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