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1. Modules over commutative rings

In this and the next lecture we introduce the notion of R-modules, where R is
an associative ring with unit 1R ∈ R (often denoted just 1 = 1R ∈ R). In this
lecture we focus on commutative rings, for which module theory is slightly easier,
as one does not have to take too much care of the distinction between left and right
modules. Most of the content of this lecture will be generalised to the case of a
non-commutative ring in the next lecture. For this lecture and the next one, refer
to [Rot, 2.1-2.2].

1.1. Definition of modules and first examples.

Definition 1.1. Let R be a commutative, unital ring. An R-module is an abelian
group M endowed with an operation, called “scalar multiplication” and denoted

R×M →M, (r,m) 7→ r ·m,

satisfying the following properties, for all r, r′ ∈ R and all m,m′ ∈M :

(1) r · (m+m′) = r ·m+ r ·m′;
(2) (r + r′) ·m = r ·m+ r′ ·m;
(3) r · (r′ ·m) = (r · r′) ·m;
(4) 1R ·m = m.

Example 1.2. The trivial group 0 can be upgraded to an R-module by setting
r · 0 = 0. This is the most boring example.

Example 1.3. If R = F is a field, then an R-module is precisely a F-vector space.
Hence the notion of module generalises the notion of vector space.

Example 1.4. By definition, every R-module is in particular an abelian group. If
R = Z are the integers, then the viceversa holds: every abelian group M can be
given a unique structure of Z-module, by declaring:

• 0 · m = 0 ∈ M for all m ∈ M : check that this is forced, using that
0 ·m = (0 + 0) ·m = 0 ·m+ 0 ·m;

• r ·m = m + · · · + m, where the sum contains r ≥ 1 equal summands, for
all r ≥ 1: check by induction that this assignment is also forced;
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• r ·m = −((−r) ·m), for r < 0, where −r ∈ Z is positive and −((−r) ·m)
is the opposite of ((−r) ·m) in the abelian group M : check again that this
assignment is forced.

Example 1.5. The ringR is anR-module, by using the ring multiplicationR×R→
R as scalar multiplication. In the commutative case, it does not matter which copy
of R in R×R plays the role of ring and which of module.
More generally, if I is any set, consider the set RI of families (ri)i∈I of elements of
R indexed by I; then RI is an R-module by pointwise/coordinatewise operations.
For example, we set r · (ri)i∈I = (r · ri)i∈I , and (ri)i∈I + (r′i)i∈I = (ri + r′i)i∈I .

For abelian groups, we have a notion of subgroup and quotient group. Something
similar occurs for R-modules.

Definition 1.6. Let M be an R-module. A subset N of M is a submodule (more
precisely, a sub-R-module) if it is closed under all operations; in particular N is a
sub-abelian group of N , and for all r ∈ R and m ∈ N , the scalar multiplication
r ·m yields again an element in N .
Given M and a submodule N , the quotient module M/N is the following module:
the underlying abelian group of M/N is the quotient abelian group M/N ; the scalar
multiplication is defined by setting r · [m]N = [r ·m]N for all r ∈ R and m ∈ M ,
where [m]N denotes the class of m in the quotient abelian group M/N .

By taking submodules and quotient modules we can create many more examples
of R-modules.

Example 1.7. Recall Example 1.5. A submodule N of R is what is usually called
an ideal of the commutative ring R. The quotient R/N is then an R-module as
well. This can be seen as a particular case of Example 1.9, recalling that R/N has
a natural structure of commutative ring.

Definition 1.8. Let M be an R-module and S ⊂ M any subset. We denote by
SpanR(S) ⊂M the submodule generated by S, which can be alternatively described
by either of the following (check that they are equivalent!):

• SpanR(S) is the subset of M containing all elements m that can be written

as a finite linear combination
∑k
i=1 ri ·mi, with ri ∈ R and mi ∈ S;

• SpanR(S) is the intersection of all submodules N of M containing S.

We say that a subset S ⊂ M generates M if SpanR(S) = M (and is thus not a
proper submodule); we also say that S is a generating set for M .

For example 1 ∈ R generates R as an R-module (see Example 1.5); but for example{
x, x2

}
∈ Q[x] only generates a proper sub-Q[x]-module of Q[x], the ideal (x):

in fact this submodule is also generated by the subset {x} of
{
x, x2

}
. Another

example is the following: if F is a field and V is a F-vector space, then any basis of
V is a generating set for V .

Example 1.9. Let f : R→ S be a map of commutative rings. Then S is naturally
an R-module by keeping the abelian group structure and by setting r · s = f(r) · s,
where the second · is the product of the ring S.

Example 1.10. In fact much more than what discussed in Example 1.9: if f : R→
S is a map of rings and M is an S-module, then M becomes automatically an R-
module by setting r ·m = f(r) ·m. We say that M is an R-module by restriction of
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scalars, though this terminology might suggest that we want only to consider the
case in which f is injective (but there is no need for this constraint).
As a special case, consider, for a commutative ring R, the ring of polynomials R[x]
in one variable; then the inclusion R ↪→ R[x] makes every R[x]-module into an R-
module. Viceversa, every choice of λ ∈ R gives a (unique) map of rings R[x] → R
sending x 7→ λ and such that the composite R ↪→ R[x] → R is the identity of
R. Thus, for every choice of λ, we have a way to transform an R-module into a
R[x]-module.

Example 1.11. For a fixed commutative ring R and abelian group M , it is not
always possible to upgrade M to an R-module. Here are some examples (more
refined examples could be given after seeing more material in the course).

• If R = Q is the field of rational numbers (or any infinite field), then an R-
module M must be either 0 or infinite. If M is instead a finite, non-trivial
group, then it cannot be given a structure of Q-module.
• In a similar way, if R = Z/k is the ring of integers modulo k ≥ 2, then

a necessary (and actually sufficient) condition on an abelian group M to
admit a structure of R-module is the following: for every m ∈M , the k-fold
sum m+ · · ·+m is equal to 0.

For the following example, we need some notation.

Notation 1.12. Let M be an R-module and r ∈ R. We denote by r · − : M →M
the map m 7→ r ·m, and call it the “scalar multiplication by r”.

Example 1.13. For a fixed commutative ring R and abelian group M , it can
happen that M can be upgraded to an R-module in several different ways. For
example, recall Example 1.10, let R = Q and consider two different values λ, λ′ ∈ Q.
Then Q becomes a Q[x]-module in two ways, which we denote by Qλ and Qλ′ ,
depending on whether the scalar multiplication by x coincides with multiplication
(in Q) by λ or by λ′. These two modules have a quite different behaviour with
respect to scalar multiplication by elements in Q[x]:

• consider the element (x−λ) ∈ Q[x]: the associated map ((x−λ) · −) sends

all of Qλ to 0, whereas it is a bijection Qλ′ → Qλ′ ;
• viceversa, the element (x− λ′) ∈ Q[x] acts as a bijection on Qλ and as the

constant map to 0 on Qλ′ .

In example 1.5 we have considered families of elements of the same R-module,
namely R. We can generalise this idea as follows.

Definition 1.14. Let I be a set and let (Mi)i∈I be a family of R-modules. The
product of sets

∏
i∈IMi has a natural structure of R-module by defining operations

coordinatewise. For example, we set r·(mi)i∈I = (r·mi)i∈I . We call this the product
of R-modules.
We also define the direct sum

⊕
i∈IMi as the submodule of

∏
i∈IMi of families

(mi)i∈I with the following property: there are at most finitely many indices i ∈ I
for which mi 6= 0 in Mi.

If I is finite, note that in fact
⊕

i∈IMi is equal to the whole
∏
i∈IMi.

Notation 1.15. In the case of I of cardinality 2, we also writeM⊕M ′ = M×M ′ for
the direct sum/product of two modules. Similarly for any finite set I = {i1, . . . , in},
we may write M1 ⊕ · · · ⊕Mn for the direct sum of the n modules M1, . . . ,Mn.
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1.2. Homomorphisms of modules. We have now a good arsenal of operations
to construct many different R-modules. The next important step is to define what
morphisms of R-modules are, in order to be able to compare different R-modules.

Definition 1.16. Let M and N be R-modules. A map of sets f : M → N is an R-
linear map, or a homomorphism of R-modules, if f is a map of abelian groups and
f is compatible with the two scalar multiplications, i.e. f(r ·m) = r · f(m) for all
m ∈M and r ∈ R. The set of all R-linear maps M → N is denoted HomR(M,N).
A map f : M → N is an isomorphism of R-modules if it is R-linear and bijective.

Example 1.17. The identity map IdM : M → M of an R-module M is R-linear.
More generally, since we assume R commutative, for all r ∈ R the map r · − from
Notation 1.12 is R-linear. Let us check in particular the compatibility with scalar
multiplication: for all s ∈ R and m ∈M we have

(r · −)(s ·m) = r · (s ·m) = (r · s) ·m = (s · r) ·m = s · (r ·m) = s ·
(
(r · −)(m)

)
.

Example 1.18. If R = F is a field, then an F-linear map is precisely a F-linear
map of vector spaces in the usual sense from linear algebra.

Example 1.19. If R = Z, then a Z-linear map of Z-modules is the same as a
homomorphism of abelian groups.

Note also that if f : M → M ′ and g : M ′ → M ′′ are R-linear maps between R-
modules, then the map of sets g ◦ f : M → M ′′ also satisfies all properties to be
R-linear. This allows us to compose R-linear maps and stay in the realm of R-linear
maps.

Example 1.20. For all R-modules M,N there is always the 0 map 0: M → N ,
sending all elements of M to 0 ∈ N . It can happen that this is the unique R-linear
map, even if neither M nor N is the zero module. Here are two examples.

• Let R = Z and let M = Z/2 and N = Z/3. Then there is no non-trivial
homomorphism of abelian groups Z/2→ Z/3.

• Let R = Q[x] and consider the two modules Qλ and Qλ′ from Example

1.13. Then every Q[x]-linear map f : Qλ → Qλ′ is the zero map. To see
this, let m ∈ Qλ; then

0 = f(0) = f((x− λ) ·m) = (x− λ) · f(m) = (λ′ − λ) · f(m) ∈ Qλ
′
.

Now recall that (λ′ − λ) ∈ Q ⊂ Q[x] acts on Qλ′ ∼= Q just by m′ 7→
(λ′ − λ) · m′ ∈ Q. Since (λ′ − λ) · − is an invertible map Q → Q (it is
an automorphism of Q-vector spaces), we can “divide by (λ′ − λ)” and
conclude that f(m) = 0. This holds for all m ∈ Qλ.

The previous example is in net contrast with what happens with vector spaces over
a field: given two non-trivial vector spaces, there is always a non-trivial linear map
between them.

Example 1.21. Let (Mi)i∈I be a family of R-modules. Then each projection

πi :
∏
i∈I

Mi →Mi,

which is a priori a map of sets, is in fact an R-linear map. Moreover, let N be an-
other R-module; then a map of sets f : N →

∏
i∈IMi carries the same information

of (can be retrieved from, and determines) a family of maps fi : N → Mi, one for
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each i ∈ I: just take fi = πi ◦ f . Check that f is R-linear if and only if all maps
fi, for i ∈ I, are R-linear. We have in fact a natural bijection of sets

HomR(N,
∏
i∈I

Mi) ∼=
∏
i∈I

HomR(N,Mi).

This makes it easy to construct R-linear maps with
∏
i∈IMi as target : one just has

to specify the “coordinates” of a map f , i.e. its composition with the projections
πi.

Notation 1.22. For a direct sum
⊕

i∈IMi of R-modules, and for an index j ∈ I,
we denote by ιj : Mj →

⊕
i∈IMi the map sending m ∈ Mj to the family (mi)i∈I

with mj = m and mi = 0 for all i 6= j. Note that it is an R-linear, injective map.
By slight abuse of notation, we often regard Mj as a submodule of

⊕
i∈IMi, and

just write Mj ⊂
⊕

i∈IMi.

Each element m ∈
⊕

i∈I can be written uniquely as a finite sum
∑
j∈I ιj(mj),

for a suitable family (mj)j∈I of elements mj ∈ Mj , with all but finitely many mj

vanishing: check that the only option is to take mj equal to πj(m), after considering
m as an element in

∏
i∈IMi. Use this remark to solve the following exercise.

Exercise 1.23. Let (Mi)i∈I be a family of R-modules, and for all i ∈ I let Si ⊂Mi

be a generating set (see Definition 1.8). Then
⋃
i∈I ιi(Si) ⊂

⊕
i∈IMi is a generating

set for the direct sum.

Example 1.24. Let N be an R-module, and suppose we are given R-linear maps
fi : Mi → N for all i ∈ I; we can then construct an R-linear map f :

⊕
i∈IMi → N

by setting

f(m) =
∑
j∈I

fj(mj),

where we use, for each element m ∈
⊕

i∈IMi, the decomposition m =
∑
j∈I ιj(mj)

described above. Note that the sum for f(m) is a finite sum of elements ofN (maybe
up to a lot of vanishing summands, that we can neglect), so it is well-defined. The
map f :

⊕
i∈IMi → N is R-linear, and moreover it is the unique R-linear map

satisfying the following property: for all i ∈ I, the composition f ◦ ιi : Mi → N is
precisely the map fi.
We have in fact a natural bijection of sets

HomR

(⊕
i∈I

Mi, N

)
∼=
∏
i∈I

HomR(Mi, N).

This makes it easy to construct R-linear maps with
⊕

i∈IMi as source: one just
has to specify the “restrictions” fj of a map f on each summand Mj , i.e. its
compositions with the inclusions ιj . As soon as each fj is R-linear, we get an
R-linear map f .

The next definition upgrades the set HomR(M,N) to a new R-module. The con-
struction crucially relies on R being commutative, and it generalises the well-known
fact that, over a field F, if V and W are F-vector spaces then HomF(V,W ) carries
a natural structure of F-vector space.

Definition 1.25. Let M,N be R-modules. For f, g ∈ HomR(M,N) we define
f + g ∈ HomR(M,N) by the formula

(f + g)(m) = f(m) + g(m) ∀m ∈M.
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For r ∈ R we moreover define r · f ∈ HomR(M,N) by the formula

(r · f)(m) = r · (f(m)).

Let us check that, indeed, the defined function of sets g := r ·f is again R-linear; in
particular, let us check that for all s ∈ R and m ∈ M we have g(s ·m) = s · g(m).
We have indeed

g(s ·m) = (r · f)(s ·m) = r · (f(s ·m)) = r · (s · f(m)) = (r · s) · f(m) =

= (s · r) · f(m) = s · (r · f(m)) = s · g(m).

As you see, we have used the axioms of R-modules, the fact that f is known to be
R-linear, and most crucially the fact that R is a commutative ring. Compare this
last computation with Example 1.17.

Example 1.26. The module HomR(R,M) is canonically isomorphic to M . The
bijection is given by pairing f : R → M with f(1) ∈ M . Check that this bijection
is R-linear.
More generally, the R-module HomR(

⊕
i∈I R,M) is canonically isomorphic to the

product
∏
i∈IM . Here, by

∏
i∈IM we mean the product of the family of modules

(Mi)i∈I , with all Mi equal to M . It is common to say that one takes the product
of “I copies of the R-module M”. Similarly for

∏
i∈I R.

It is then extremely easy (even in comparison with Example 1.24) to construct R-
linear maps with

⊕
i∈I R as source: one just has to specify a family of elements

(mi)i∈I in the target M , i.e. mi ∈M . This justifies the following definition.

Definition 1.27. Let I be a set. The free R-module with basis indexed by I is the
direct sum

⊕
i∈I R.

Abstractly, an R-module M is free if it is isomorphic to one of the form
⊕

i∈I R,
i.e. there exists a suitable set I and an R-linear isomorphism φ :

⊕
i∈I R

∼= M .
The elements φ(ιi(1)) ∈M are said to form a basis of M .

Note that in the case of vector spaces over a field we precisely recover the notion
of basis. In fact, over a field, every vector space admits a basis, i.e. it is free. This
is not the case over a generic ring R.

Example 1.28. A free module over Z is either 0 or infinite. Hence, for instance,
Z/k is not free for k ≥ 2.

1.3. Bilinear maps. In the last part of the lecture we address the following ques-
tion: Is there a meaningful way to compute the product of elements of R-modules?
A priori, the answer is NO: by definition, if M is an R-module, the only defined
operations are sum and multiplication of an element of M with an element of the
ring R; but given two R-modules M and M ′ and elements m ∈ M and m′ ∈ M ′,
the product m ·m′ just does not make sense. However, there are situations, such
as the following, in which a meaningful product is indeed defined.

Example 1.29. Let R be a ring and consider M = R[x] and M ′ = R[y] as R-
modules. Given polynomials f(x) ∈ M and g(y) ∈ M ′, the product f(x) · g(y)
makes perfectly sense in the bigger polynomial ring R[x, y]. We have in fact a
multiplication map

µ : R[x]×R[y]→ R[x, y].

Note that the target is a new R-module, different from both M and M ′.
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Example 1.30. Let R = Z and consider M = Z/10 and M ′ = Z/20 as Z-modules.
Then we may define a map

µ : M ×M ′ → Z/2, ([m]10, [m
′]20) 7→ [mm′]2.

The previous map is essentially given by projecting both M and M ′ onto Z/2, and
then taking the product in the ring Z/2.
Of course, we could also have projected onto Z/5 instead, or even better onto Z/10
(or even worse, onto the 0 module!).

The previous examples are instances of the following definition.

Definition 1.31. Let R be a commutative ring and letM , M ′ and P be R-modules.
An R-bilinear map

µ : M ×M ′ → P

is a map of sets satisfying the following properties, for all m1,m2 ∈M , m′1,m
′
2 ∈M ′

and r ∈ R:

(1) µ(m1 +m2,m
′
1) = µ(m1,m

′
1) + µ(m2,m

′
1) ∈ P ;

(2) µ(m1,m
′
1 +m′2) = µ(m1,m

′
1) + µ(m1,m

′
2) ∈ P ;

(3) µ(r ·m1,m
′
1) = µ(m1, r ·m′1) = r · µ(m1,m

′
1) ∈ P .

The three properties in the previous definition extrapolate what one usually whishes
from a multiplication: the first two are a form of distributive law with respect to
the addition; the third is a form of compatibility of the multiplication µ with the
scalar multiplication (multiplication by elements in R).
Given M and M ′, the question becomes: what are the possible choices of P and of
an R-bilinear map µ : M×M ′ → P? Is there a choice which is better than the other
ones? The second part of the question is justified by the trivial example in which
we take P = 0 and µ the constant, zero map: in this case we do get an R-bilinear
map, but it is a quite boring and useless one!
In general, if we want to construct an R-bilinear map µ : M×M ′ → P , we need the
following: for all (m,m′) ∈M ×M ′ we need to identify an element µ(m,m′) ∈ P ;
up to replacing P with a submodule, it does not harm to assume that P is in fact
generated by the set of elements (µ(m,m′))(m,m′)∈M×M ′ . Moreover the relations
(1)-(3) from Definition 1.31 must hold between these elements.
In few words, the tensor product M ⊗RM ′ will be constructed in the most direct
way to have all the previous properties: it is obtained from a free module with basis
the elements (m,m′) of the set M×M , by quotienting the suitable submodule that
guarantees that (1)-(3) hold. We will see this in the next lecture.

2. Tensor product, and modules over non-commutative rings

In the first part of the lecture we still work over a commutative ring R.

2.1. Kernel and cokernel. Kernel and cokernel of R-linear maps are defined as
for abelian groups in the setting of R-modules, and have a natural structure of
R-modules.

Definition 2.1. Given an R-linear map f : M → N , the kernel ker(f) ⊂ M is
the subset of elements m ∈ M such that f(m) = 0. Let us check that it is a
sub-R-module:
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• if m,m′ ∈ ker(f), then f(m + m′) = f(m) + f(m′) = 0 + 0 = 0 ∈ N , so
also m + m′ ∈ ker(f); this is the same argument used for abelian groups
and vector spaces;
• if r ∈ R and m ∈ ker(f), then f(r ·m) = r · f(m) = r · 0 = 0 ∈ N , so also
r ·m ∈ ker(f); this is also the same argument used for vector spaces.

The image Im(f) is the subset of N containing elements of the form f(m) for some
m ∈M . Check that it is a submodule of N .
The cokernel coker(f) is defined as the quotient N/Im(f).

As for abelian groups, an R-linear map is injective if and only if it has trivial kernel,
and it is surjective if and only if it has trivial cokernel.

2.2. Maps from a quotient module and from a cokernel. Let M , N and P
be R-modules, with N ⊂M a submodule. Let π : M →M/N be the projection to
the quotient, which is R-linear. Then any R-linear map f : M/N → P gives rise to
a map g = f ◦ π : M → P , with the property that g restricts on N to the zero map
of R-modules: g|N ≡ 0: N → P . Viceversa, given a map g : M → P such that g|N
is the zero map, we can define f : M/N → P by setting f([m]N ) = g(m), and this
f is well-defined and also R-linear (check this).
In few words: an R-linear map with M/N as source is the same amount of infor-
mation as an R-linear map with M as source, whose restriction on N vanishes.
The situation with a cokernel is very similar. Let h : N → M be an R-linear map
(possibly, a non-injective one), and let P be an R-module; let πh : M → coker(h)
be the projection to the cokernel, which is by definition a quotient of M . Then
there is a bijective correspondence between the following:

• R-linear maps f : coker(h)→ P ;
• R-linear maps g : M → P such that the composition g ◦ h : N → P is the

zero map.

The bijection associates f : coker(h)→ P with f ◦ πh : M → P .

2.3. Presenting a module by generators and relations. Let now M be an
R-module, and let S ⊂ M be a generating set (e.g. the entire set M , but often
something smaller suffices!). Let F0 =

⊕
s∈S R

1; then there is a surjective map

g0 : F0 →M, g(ιs(1)) = s.

Here we use that an R-linear map out of a free R-module is uniquely determined
by its values on the basis of the free module. The image of g contains S, hence it
contains SpanR(S) = M , and that’s why we know that g is surjective.
The kernel ker(g0) is then some submodule of F0; we can fix a set S ′ ⊂ ker(g0)
of generators and repeat the trick: we let F1 =

⊕
s′∈S′ R and consider the map

g1 : F1 → F0 given by ιs′(1) 7→ s′. The image of this map is the submodule of F0

generated by S ′, i.e. Im(g1) = ker(g0).
The map g0 : F0 → M is surjective, and vanishes on ker(g0), hence it induces an
R-linear map f0 : F0/ ker(g0) → M : check that this map is both surjective and
injective, hence an R-linear isomorphism. Since ker(g0) = Im(g1), we can write
also

coker(g1) = F0/Im(g1) = F0/ ker(g0) ∼= M.

1to explain notation: the letter “F” because it is a free module; the index “0” will be clear
later in the course
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Definition 2.2. A presentation of an R-module M is the datum of an R-linear
map g1 : F1 → F0 between free R-modules, together with an isomorphism

f0 : coker(g1)→M.

We consider F0 as giving the generators of M : indeed the composition g0 : F0 →M
given by

F0 coker(g1) Mπ f0

is surjective, where π is the projection onto the cokernel; and we consider F1 as
giving the relations between the generators: indeed the kernel of the above compo-
sition g0 : F0 →M is Im(g1).

One usually writes sloppily g1 : F1 → F0 for a presentation of M , neglecting to also
specify an isomorphism coker(g1) ∼= M . It is better to write F1 → F0 → M for a
presentation of M .

Example 2.3. Let M =
⊕

i∈I R be a free module. Then there is a presentation
of M with F0 = M , F1 = 0 (the zero module), so that coker(0 : F1 → F0) is
canonically identified with F0 and hence with M . We see that M is “free from
relations”, and that’s why we call it (a bit tautologically) a free module.

Example 2.4. Let R = Q[x, y] and consider M = (x, y) ⊂ Q[x, y], the ideal of
polynomials in two variables with vanishing constant term. Define a map g0 : R ⊕
R ∼= R2 →M by sending (1, 0) 7→ x and (0, 1) 7→ y.
Every polynomial in M is a sum of non-constant monomials, i.e. monomials which
are multiples of x or of y (or both): this implies that g0 is surjective. Moreover,
let (a(x, y), b(x, y)) ∈ R2 be a couple of polynomials in x, y which is in the kernel
of g0: then a(x, y) · x + b(x, y) · y = 0 ∈ M = (x, y) ⊂ Q[x, y]. It follows that all
monomials in a are multiples of y and all monomials in b are multiples of x, and
moreover a(x, y)/y is the same polynomial in x, y as −b(x, y)/x.
We can thus define an R-linear map g1 : R→ R2 by sending 1 7→ (y,−x), and thus
g1(c(x, y)) = (c(x, y) · y,−c(x, y) · x). The image of g1 is the kernel of g0, and thus
M admits a presentation with 2 generators and 1 relation. We can write this as

R R2 M
g1 g0

2.4. Tensor products over commutative rings. The following is the “bad def-
inition” of the tensor product. It is an explicit construction, but it produces an
R-module that, in principle, is difficult to handle with: it has a lot of generators and
a lot of relations. Only after proving Proposition 2.6 we will be able to understand
what makes the tensor product so special.

Definition 2.5. Let M and M ′ be R-modules. We define an R module M⊗RM ′ as
follows. We start with the free module F =

⊕
(m,m′)∈M×M ′ R, with canonical basis

elements denoted (m,m′) = ι(m,m′)(1). We then consider the submodule N of F
generated by all elements of the following forms, for all m1,m2 ∈M , m′1,m

′
2 ∈M ′

and r ∈ R:

• (m1 +m2,m
′
1)− (m1,m

′
1)− (m2,m

′
1);

• (m1,m
′
1 +m′2)− (m1,m

′
1)− (m1,m

′
2);

• (r ·m1,m
′
1)− r · (m1,m

′
1);

• (m1, r ·m′1)− r · (m1,m
′
1).
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Finally, we define M ⊗R M ′ as the quotient R-module F/N . The class of the
generator (m,m′) in F/N is also denoted m⊗m′ ∈M ⊗RM ′.
The map of sets µ⊗ : M ×M ′ →M ⊗RM ′ is defined by µ⊗(m,m′) = m⊗m′, and
it is by construction an R-bilinear map.

In a sense, Definition 2.5 produces an R-module P which is designed in order to
receive a bilinear map from M ×M ′. The following proposition makes this idea
more precise.

Proposition 2.6. Let µ : M ×M ′ → P be any R-bilinear map, with target any
R-module P . Then there exists a unique R-linear map θ : M ⊗RM ′ → P such that
the following diagram of maps (of sets) commutes:

M ×M ′ M ⊗RM ′

P.

µ⊗

µ
θ

Proof. Since M ⊗M ′ is a quotient F/N , giving an R-linear map θ : F/N → P is

equivalent to giving an R-linear map θ̃ : F → P that vanishes on N : the map θ̃ is

obtained from θ as the composite F � F/N
θ→ P .

If we want the diagram to commute, we must have the equality

θ̃(m,m′) = θ(m⊗m′) = µ(m,m′)

for all (m,m′) ∈ M ×M ′. Thus the map θ̃ is forced on the R-basis of F given by
the elements (m,m′), and we can conclude that there are two possibilities:

• either θ̃ : F → P descends to an R-linear map θ : F/N → P , i.e. it vanishes
on N ;
• or θ̃ does not descend to an R-linear map θ : F/N → P .

In the first case, we would have that θ exists and is unique; in the second case
instead we would have that θ does not exist. Let us rule out the second case.
To prove that θ̃ vanishes on N , it suffices to prove that it vanishes on generators
(1)-(4) of N . Let us compute as example the image of a generator of N of type (3)

along θ̃:

θ̃
(
(r ·m1,m

′
1)− r · (m1,m

′
1)
)

= θ̃(r ·m1,m
′
1)− r · θ̃(m1,m

′
1)

= µ(r ·m1,m
′
1)− r · µ(m1,m

′
1) = 0.

In the first equality we use R-linearity of θ̃ : F → P ; in the second we use the
definition of θ̃, i.e. its evaluation on the basis of F ; in the third we use that
µ : M ×M ′ → P is R-bilinear.
In a similar way one can check that all generators of N are sent to 0 along θ̃. �

Motivated by Proposition 2.6, we give the following, which is the “good definition”
of the tensor product, by universal property.

Definition 2.7. Let M and M ′ be R-modules. A universal bilinear map for M×M ′
is the datum of a couple (P̄ , µ̄), where P̄ is an R-module and where µ̄ : M×M ′ → P
is an R-bilinear map, satisfying the following property (called universal property):
whenever (P, µ) is a (possibly different) couple with P being an R-module and
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µ : M × M ′ → P an R-bilinear map, then there exists a unique R-linear map
θ : P̄ → P such that the following diagram of maps of sets commutes:

M ×M ′ P̄

P.

µ̄

µ
θ

At first glance, it is not clear why the previous is a definition at all. A priori, such a
wonderful (P̄ , µ̄) could not exist at all! But here Proposition 2.6 helps us: it tells us
that in fact (M ⊗M ′, µ⊗) satisfies the property required for (P̄ , µ̄). On the other
hand, giving a property of an object often does not suffice to define the object.
We have to check that, in fact, the property of (P̄ , µ̄) in Definition 2.7 suffices to
determine this couple, at least up to isomorphism.
The argument is as follows. Let (P̄ , µ̄) and (P̌ , µ̌) be two couples satisfying the
property required by Definition 2.7. If you wish, think that (P̄ , µ̄) is the tensor
product from Definition 2.5, and (P̌ , µ̌) is instead obtained in another way.
Since µ̄ : M×M ′ → P̄ is an example of an R-bilinear map with source M×M ′, the
universal property of (P̌ , µ̌) implies that there is a unique R-linear map θ1 : P̌ → P̄
such that the following commutes

M ×M ′ P̌

P̄ .

µ̌

µ̄ θ1

Viceversa, since µ̌ : M ×M ′ → P̌ is R-bilinear, the universal property of the couple
(P̄ , µ̄) implies that there is a unique R-linear map θ2 : P̄ → P̌ such that the following
commutes

M ×M ′ P̄

P̌ .

µ̄

µ̌ θ2

Moreover, since µ̄ : M ×M ′ → P̄ is R-bilinear, the universal property of (P̄ , µ̄)
itself implies that there is a unique R-linear map θ̄ : P̄ → P̄ such that the following
commutes

M ×M ′ P̄

P̄ .

µ̄

µ̄
θ̄

In the last diagram we have two natural candidates for θ̄: one is IdP̄ , and the other
is θ1 ◦ θ2: this second map makes the last diagram commute because we can glue
the two previous diagrams, in which θ1 and θ2 appear.
By uniqueness of θ̄, we get that IdP̄ = θ1 ◦ θ2. Similarly, using the universal
property of (P̌ , µ̌) against µ̌, one obtains that IdP̌ = θ2 ◦ θ1. This means that θ1

and θ2 are inverse R-linear isomorphisms between P̄ and P̌ , and that along these
isomorphisms the bilinear maps µ̄ and µ̌ are identified. In this sense, Definition 2.7
characterises a universal bilinear map out of M ×M ′ up to canonical isomorphism.
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Example 2.8. Let f : M → N and f ′ : M ′ → N ′ be R-linear maps. You can check
that for any R-bilinear map µ1 : N ×N ′ → P the composite map of sets

M ×M ′ N ×N ′ P
f×f ′ µ1

is an R-bilinear map µ2 : M×M ′ → P . This holds in particular when P = N⊗RN ′
and µ1 = µ⊗ : N × N ′ → N ⊗R N ′ is the universal bilinear map of N × N ′.
The universal property of M ⊗R M ′ implies that there is a unique R-linear map
θ : M ⊗RM ′ → N ⊗R N ′ such that the following diagram commutes

M ×M ′ M ⊗RM ′

N ×N ′ N ⊗R N.

µ⊗

f×f ′ θ

µ⊗

The map θ is often denoted as f ⊗ f ′ : M ⊗RM ′ → N ⊗R N ′.
Exercise 2.9. Let F =

⊕
i∈I R and F ′ =

⊕
i′∈I′ R be free R-modules, and let

F ′′ =
⊕

(i,i′)∈I×I R be also a free R-module. We have a bilinear map µ̄ : F ×F ′ →
F ′′ given by the following formula, where elements of free modules are represented
as (finite) linear combinations of basis elements:

µ̄ :

(∑
i∈I

ri · ιi(1),
∑
i′∈I′

r′i′ · ιi′(1)

)
7→

∑
(i,i′)∈I×I′

(ri · r′i′) · ι(i,i′)(1).

Check that the previous assignment is indeed bilinear. Check moreover that µ̄ sat-
isfies the universal property to be a universal R-bilinear map out of F × F ′. This
implies that (F ′′, µ̄) is a model for the tensor product F ⊗RF ′. This model is much
better that the one from Definition 2.5, as it exhibits immediately the tensor prod-
uct as a free R-module. Thanks to this construction and thanks to the fact that the
universal property characterises the tensor product up to canonical isomorphism,
we of course get that also the tensor product as constructed in Definition 2.5 is a
free R-module.

2.5. Left and right modules. At this point we abandon the hypothesis that R
is a commutative ring, but we still assume that it is associative and it has a neutral
element 1 ∈ R.

Example 2.10. Here are two prominent examples of non-commutative rings that
one really wants to study:

• Let F be a field and k ≥ 2. Then the ring Mk(F) of matrices of size k × k
with coefficients in F is one of the fundamental objects to consider in linear
algebra.

• Let G be a non-commutative group. Then the group ring Z[G] is the
following ring: as an abelian group it is

⊕
g∈G Z, where we denote simply

by g the element ιg(1); the product is defined by the rule∑
g∈G

ag · g

 ·
∑
g′∈G

bg′g
′

 =
∑

(g,g′)∈G×G

(ag · bg′) · gg′.

where all sums are assumed essentially finite (finitely many non-zero sum-
mands). Module theory over Z[G] is known as representation theory of G,
and is one of the most central theories in mathematics.
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The theory of modules becomes immediately more complicated, in that we can
define two distinct types of modules.

Definition 2.11. A left R-module is an abelian group M with a multiplication by
scalars

R×M →M, (r,m) 7→ r ·m

satisfying the following properties, for all r, r′ ∈ R and all m,m′ ∈M :

(1) r · (m+m′) = r ·m+ r ·m′;
(2) (r + r′) ·m = r ·m+ r′ ·m;
(3) r · (r′ ·m) = (r · r′) ·m;
(4) 1 ·m = m.

A right R-module is an abelian group M ′ with a multiplication by scalars

M ×R→M, (m, r) 7→ r ·m

satisfying the following properties, for all r, r′ ∈ R and all m,m′ ∈M :

(1) (m+m′) · r = m · r +m′ · r;
(2) m · (r + r′) = m · r +m · r′;
(3) (m · r) · r′ = m · (r · r′);
(4) m · 1 = m.

As one can see, property (3) can be expressed both in the left and in the right
module case as follows: no matter how we put parentheses, the product r · r′ ·m
(respectively m · r · r′) is always the same element in M (respectively in M ′). We
will use the following heuristic principle very often: axioms and definitions relative
to left and right modules should be expressed as much as possible as equalities
between expressions in which only the parentheses (and possibly a “⊗” symbol)
are moved; these equalities should therefore represent some sort of associativity
between various types of multiplication.
Roughly speaking, there is a part of the theory that only deals with left R-modules,
an analogue part that only deals with right R-modules, and a part of the theory
that needs both notions at the same time. To simplify the exposition, whenever the
theory only deals with one type of module, I will discuss it considering left modules,
and leave to you to transform the statements into the setting of right modules.

2.6. What can be recycled from the last lecture. The following definitions,
observations and constructions from last time can be repeated word by word for
left modules:

• a submodule of a left R-module M is a sub-abelian group N ⊂ M which
is closed under scalar multiplication; the quotient M/N is also a left R-
module;

• if S ⊂M we have a submodule SpanR(S) ⊂M ;
• if R → S is a homomorphism of rings, then any left S-module becomes a

left S-module;
• if (Mi)i∈I is a collection of left R-modules, then

∏
i∈IMi is a left R-module,

containing a submodule
⊕

i∈IMi.
• R is a left R-module; a free left R-module is one of the form

⊕
i∈I R.
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2.7. Homomorphisms of modules. The first instance of a separation between
left and right R-modules is that, in the case of a non-commutative ring R, it is only
meaningful to define R-linear maps from a left to a left R-module (or from a right
to a right). We first give the definition, and then see what goes wrong in trying
naively to define R-linear maps from a left to a right R-module.

Definition 2.12. Let M and N be left R-modules. A function f : M → N is
R-linear if it is a homomorphism of abelian groups and for all r ∈ R and m ∈ M
the following equality holds:

f(r ·m) = r · (f(m)).

The set of all R-linear maps from M to N is denoted HomR(M,N).

The formula in the previous definition is against our heuristic principle: if we remove
parentheses, we get “frm” on left and “rfm” on right. This has a purely linguistic
reason: when we talk of a function f : M → N , we use to say “f of m” and write
f(m), instead of saying “of m, f” and writing (m)f . It might be surprising, but in
the case of left R-modules it would be better to use the second terminology, and
think of R-linear maps as acting on right. The axiom for an R-linear map of left
R-modules becomes

(r ·m)f = r · ((m)f),

which now satisfies our heuristic principle. For rights R-modules our old convention
is perfectly fine: an R-linear map f : M → N between right R-modules should be
thought of as acting on left and the axiom becomes

f(m · r) = (f(m)) · r.

If you are not convinced about the heuristic principle, see the following example.

Example 2.13. Let M be a left R-module and N be a right R-module. We would
like to say that a homomorphism of abelian groups f : M → N is R-linear if it
satisfies f(r ·m) = f(m) · r. Of course, the previous formula doesn’t respect our
heuristic principle. What happens concretely is the following: let f be a naively
R-linear map in the previous sense; then for all r, s ∈ R and m ∈M we have

f(m) · (r · s) = (f(m) · r) · s = f(r ·m) · s = f(s · (r ·m))

= f((s · r) ·m) = f(m) · (s · r).

This means that the image of f is contained in the subset (in fact a sub-right-R-
module) N comm of N of elements n ∈ N that are sent to 0 by the right scalar
multiplication by all elements of the form rs − sr ∈ R (such elements are often
called commutators). In other words, we are really considering an R-linear map
f : M → N comm. Now N comm is usually very small, and anyway it feels strange
that a generic R-linear map with target N only uses a certain submodule for the
image, right?

Let M,N be left R-modules. The set HomR(M,N) is naturally an abelian group by
pointwise sum of functions: if f, g : M → N are R-linear, then f+g is automatically
R-linear. Unfortunately, however, there is no good way to upgrade this to an left
or right R-module structure on HomR(M,N). The naive idea would be to define,
for an R-linear map f : M → N and for r ∈ R, a new map g : M → N by the rule

(m)g = (r ·m)f = r · ((m)f).
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Note that the two expressions are automatically equal because f is R-linear. How-
ever, the map g is in general not R-linear: let s ∈ R, then we have

(s ·m)g = r · s · (m)f 6= s · r · (m)f = s · (m)g,

where the inequality holds in general (but of course could be an equality sometimes).

2.8. Bilinear maps and tensor products. The heuristic principle really helps
us when trying to understand what an R-bilinear map should be in the case of R
non-commutative. It turns out that the only sensible definition is the following.

Definition 2.14. Let M be a right R-module and M ′ be a left R-module, and
let P be an abelian group. An R-bilinear map µ : M ×M ′ → P is a map of sets
satisfying the following requirements, for all m1,m2 ∈M , m′1,m

′
2 ∈M ′ and r ∈ R:

(1) µ(m1 +m2,m
′
1) = µ(m1,m

′
1) + µ(m2,m

′
1) ∈ P ;

(2) µ(m1,m
′
1 +m′2) = µ(m1,m

′
1) + µ(m1,m

′
2) ∈ P .

(3) µ(m1 · r,m′1) = µ(m1, r ·m′1) ∈ P ;

Note that condition (3) is in line with our heuristic principle, as we see the letters
m1rm

′
1 as argument of µ on both sides. The tensor product M ⊗RM ′ will be only

an abelian group, defined as follows.

Definition 2.15. Let M be a right R-module and M ′ be a left R-module. A
universal bilinear map for M ×M ′ is the datum of a couple (P̄ , µ̄), where P̄ is
an abelian group and where µ̄ : M ×M ′ → P is an R-bilinear map, satisfying the
following universal property : whenever (P, µ) is a (possibly different) couple with
P an abelian group and µ : M ×M ′ an R-bilinear map, then there exists a unique
homomorphism of abelian groups θ : P̄ → P such that the following diagram of
maps of sets commutes:

M ×M ′ P̄

P.

µ̄

µ
θ

The proof that such a couple (P̄ , µ̄), if it exists, is unique up to canonical iso-
morphism, is word by word the same as in the case of a commutative ring. The
existence of a universal bilinear map is given by the following definition, which is
analogue to Definition 2.5.

Definition 2.16. Let M be a right R-module and M ′ be a left R-module. Consider
the free abelian group A =

⊕
(m,m′) ∈M ×M ′Z with basis the elements of the set

M ×M ′. Denote (m,m′) = ι(m,m′)(1) ∈ A. Let B ⊂ A be the subgroup generated
by the following types of elements, for varying m1,m2 ∈ M , m′1,m

′
2 ∈ M ′ and

r ∈ R:

(1) (m1 +m2,m
′
1)− (m1,m

′
1)− (m2,m

′
1);

(2) (m1,m
′
1 +m′2)− (m1,m

′
1)− (m1,m

′
2).

(3) (m1 · r,m′1)− (m1, r ·m′1).

We set M⊗RM ′ to be the abelian group A/B. We denote by m⊗m′ = [(m,m′)]B .
We have a R-bilinear map µ⊗ : M ×M ′ →M ⊗RM ′ given by (m,m′) 7→ m⊗m′.

As an exercise, copy and adapt the proof of Proposition 2.6 to show that Definition
2.16 gives a universal R-bilinear map out of M ×M ′.



18 ANDREA BIANCHI

2.9. Some examples over the integers. Let R = Z throughout the subsection,
and consider first the modules M = Z/2 and N = Z/2. What is M ⊗Z N? We
definitely have a Z-bilinear map

µ̄ : Z/2× Z/2→ Z/2, ([m]2, [n]2) 7→ [mn]2.

(Check that indeed this map is Z-bilinear; it should be intuitive because it is the
product of the ring Z/2, but intuition is not always leading in the right place...). We
now claim that (Z/2, µ̄) is a universal bilinear map out of Z/2× Z/2, in the sense
of Definition 2.7. To prove this, let (P, µ) be any couple where P is a Z-module
and µ : Z/2 × Z/2 → P is any Z-bilinear map. Let [m]2, [n]2 ∈ Z/2, and without
loss of generality use m,n ∈ {0, 1} as representative of classes modulo 2. We have

µ([m]2, [n]2) = µ(m · [1]2, n · [1]2) = mn · µ([1]2, [1]2).

Let’s give the name p = µ([1]2, [1]2) ∈ P . By the previous reasoning, we have
µ([m]2, [n]2) = 0 ∈ P if either m or n is 0. Moreover we can compute

0 = µ([2]2, [1]2) = µ(2 · [1]2, [1]2) = 2 · µ([1]2, [1]2) = 2 · p.
Overall, µ sends 3 out of 4 elements of Z/2×Z/2 to 0 (the ones “containing an even
coordinate”), and sends the last element to an element p satisfying 2p = 0 ∈ P .
But then we can define a Z-linear map θ : Z/2 → P by setting [1]2 7→ p (and of
course [0]2 7→ 0 ∈ P ). You can check that this map θ is the unique Z-linear map
Z/2→ P (in fact it is also the unique map of sets!) such that µ = θ◦µ̄. Conclusion:
Z/2⊗Z Z/2 ∼= Z/2.
Let’s now see what happens with M = Z/2 and N = Z/3. We obviously can take
P = 0, the zero Z-module, and consider the zero map M × N → P , which is Z-
bilinear. This is boring: can we do better? No! Let us check that the zero map
µ̄ : Z/2 × Z/3 → 0 is the univeral Z-bilinear map out of Z/2 × Z/3. Let therefore
(P, µ) be another Z-bilinear map towards a Z-module P . Then for all m,n we have

µ([m]2, [n]3) = µ(3 · [m]2, [n]3) = µ([m]2, 3 · [n]3) = µ([m]2, [0]3)

= µ([m]2, 0 · [1]3) = 0 · µ([m]2, [1]3) = 0

This means that µ is the constant 0 map. The constant 0 map factors uniquely
through the zero Z-module, so (0, µ̄) has the univeral property.

3. Properties of Hom and tensor, exact sequences

3.1. A small ambiguity. Let R be a commutative ring, and let M and M ′ be
two R-modules. We have defined so far M ⊗RM ′ in two different ways:

• as an R-module, as a certain quotient of F :=
⊕

(m,m′)∈M×M ′ R; let me

call it (M ⊗RM ′)1;
• we can also forget that R is commutative and consider M as a right and M ′

as a left R-module; then we can use the recipe for non-commutative rings
and define M ⊗RM ′ as an abelian groups, namely as a certain quotient of
A :=

⊕
(m,m′)∈M×M ′ Z; let me call this (M ⊗RM ′)2.

It turns out that forgetting the R-scalar multiplication of (M ⊗R M ′)1, we do
actually get an abelian group isomorphic to (M ⊗RM ′)2. A map of abelian groups

(M ⊗RM ′)2 → (M ⊗RM ′)1

can be constructed as follows: the map µ⊗ : M×M ′ → (M⊗RM ′)1 is “R-bilinear”
in the first given definition, treating M and M as R-modules and treating (M ⊗R
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M ′)1 as an R-module; in particular, it is also “R-bilinear” in the second given
definition, treating M as a right R-module and M ′ as a left R-module, and treating
(M ⊗R M ′)1 only as an abelian group. so the universal property of (M ⊗R M ′)2

gives a map of abelian groups (M ⊗RM ′)2 → (M ⊗RM ′)1.

Exercise 3.1. Prove that the previous map of abelian groups is an isomorphism.

3.2. Universal property of products and direct sums of modules. Let R be
a (possibly non-commutative) ring. We have introduced left and right R-modules,
and R-linear maps. We thus obtain the following two categories.

Definition 3.2. The category RMod has left R-modules as objects and R-linear
maps of left R-modules as morphisms. Composition of maps is defined by com-
posing R-linear maps as maps of sets and recognising that the resulting composite
map is again R-linear.
Similarly, ModR is the category with objects right R-modules and morphisms the
R-linear maps of right R-modules.

In this subsection we focus on left R-modules, but we could make an analogue
discussion about right R-modules. Let (Mi)i∈I be a collection of left R-modules.
We have constructed the left R-modules

∏
i∈IMi and inside it we have identified⊕

i∈IMi. Both these modules can be characterised by a universal property.

Definition 3.3. Let C be a category and let (xi)i∈I be a collection of objects in C.
A product of the xi’s is the datum (ȳ, (π̄i)i∈I) of an object ȳ and a collection of C-
morphisms π̄i : y → xi with the following universal property: whenever (y, (πi)i∈I)
is the datum of an object y ∈ C and a collection of C-morphisms πi : y → xi, there
is a unique map θ : y → ȳ such that for all i ∈ I we have πi = π̄i ◦ θ.

Similarly, a coproduct of the xi’s is the datum (z̄, (ῑi)i∈I) of an object z̄ and a
collection of C-morphisms ῑi : xi → z with the following universal property: when-
ever (z, (ιi)i∈I) is the datum of an object z ∈ C and a collection of C-morphisms
ιi : xi → z, there is a unique map θ : ȳ → y such that for all i ∈ I we have ιi = θ◦ ιi.

For a generic category C and a generic collection (xi)i∈I of objects, there are two
possibilities: either there exists a product (respectively, a coproduct) of the collec-
tion, and in this case it is unique up to a canonical isomorphism identifying also
the structure maps to (from) the xi’s; or there exists no product (no coproduct).

Notation 3.4. If a product (ȳ, (π̄i)i∈I) of the xi’s exists, the object ȳ is usually
denoted

∏
i∈I xi ∈ C, but remember that this is only half of the information of a

product: the other half are the morphisms π̄i towards the xi’s.
Similarly, if a coproduct of the xi’s exists, its underlying object is usually denoted∐
i∈I xi ∈ C, and unfortunately there seems to be no standard notation to denote

the structure morphisms from the xi’s to the coproduct (I’m using the letter “ι”
for them).

In the category RMod, the product module
∏
i∈IMi with coordinate projections

πj :
∏
i∈I →Mj is a model for the categorical product, i.e. it satisfies the universal

property.
Similarly, in RMod, the direct sum

⊕
i∈IMi with the maps ιj : Mi →

⊕
i∈IMj is

a model for the categorical coproduct, i.e. it has the universal property.
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For a generic left R-module N , we then have isomorphisms of sets

HomR

(⊕
i∈I

Mi, N

)
∼=
∏
i∈I

HomR(Mi, N);

HomR

(
N,
∏
i∈I

Mi

)
∼=
∏
i∈I

HomR(N,Mi).

Check that the previous are a isomorphisms of abelian groups, and if R is commu-
tative they are even isomorphisms of R-modules.
If I is finite, we saw that the inclusion

⊕
i∈IMi ⊂

∏
i∈IMi is in fact an equality.

This is a special property of the category RMod: finite coproducts “coincide” with
finite products. In particular, there is an object, the zero module, which is both
the empty categorical coproduct (initial object) and the empty categorical product
(final object).
This is for example not the case for the category Set of sets: a disjoint union of
two sets is usually not the same as the cartesian product of sets. And the empty
set (initial object) is not isomorphic to the one-point set (terminal object).

3.3. Distributivity of Hom and tensor. In this subsection we do not assume R
commutative; if however R is commutative, we write in parentheses what happens
more. Let M,M ′, N,N ′ be left R-modules; then we have isomorphisms of abelian
groups (of R-modules)

• HomR(M ⊕M ′, N) ∼= HomR(M,N)⊕HomR(M ′, N);
• HomR(M,N ⊕N ′) ∼= HomR(M,N)⊕HomR(M,N ′);

This follows from the previous subsection, using I of cardinality 2. What happens
with the tensor product? Let (Mi)i∈I be a collection of right R-modules and let N
be a left R-module. For each j ∈ I the composition

Mj ×N
(⊕

i∈IMi

)
×N

(⊕
i∈IMi

)
⊗R N

ιj×IdN µ⊗

is the composition of a cartesian product of R-linear maps with an R-bilinear map,
hence is R-bilinear, hence it induces a map of abelian groups (of R-modules)

ιj ⊗ IdN : Mj ⊗R N →

(⊕
i∈I

Mi

)
⊗R N.

By the universal property of direct sum, these maps assemble into a map⊕
j∈I

ιj ⊗ IdN :
⊕
j∈I

(Mj ⊗R N)→

(⊕
i∈I

Mi

)
⊗R N.

Proposition 3.5. The above map is an isomorphism.

One usually says that the tensor product is “distributive with respect to direct
sum”, or it is “biadditive”. I leave the proof of the previous proposition as ex-
ercise. A good way to attack the exercise is to try to prove that the abelian
group

⊕
j∈I (Mj ⊗R N) receives a universal R-bilinear map from the product of

R-modules (one right, one left)
(⊕

i∈IMi

)
×N .
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3.4. More properties of Hom and tensor over commutative rings. Let R
be a commutative ring throughout the subsection, and let M and M ′ be R-modules.

Example 3.6. We give a hands-on proof that if S ⊂M and S ′ ⊂M ′ are generating
sets for M,M ′ as R-modules, then the set S ′′ = {s⊗ s′ : (s, s′) ∈ S × S ′} ⊂M ⊗R
M ′ generates M ⊗RM ′ as an R-module.
Surely, the set {m⊗m′ : (m,m′) ∈M ×M ′} = Im(µ⊗) ⊂ M ⊗R M ′ suffices to
generate the entire M ⊗R M ′ as an R-module2. So we want to prove that for all
(m,m′) ∈ M ×M ′, the element m⊗m′ can be generated using the set S ′′. Write

m =
∑k
i=1 ri · si and m′ =

∑k′

j=1 r
′
j · s′j , with ri, r

′
j ∈ R, si ∈ S and s′j ∈ S ′. Then

we have

m⊗m′ =

(
k∑
i=1

ri · si

)
⊗

 k′∑
j=1

r′j · s′j

 =

k∑
i=1

k′∑
j=1

(rir
′
j) · (si ⊗ s′j).

In particular, if both M and M ′ are finitely generated, then also M ⊗M ′ is finitely
generated as an R-module (but possibly not as an abelian group!).

Ask yourself how much one can adapt the previous example to the case of non-
commutative rings R3.

Example 3.7. Let I be an ideal of R. We set M ′ = R/I4 and want to compute
M ⊗R R/I. Let IM ⊂ M be the submodule generated by all elements of the
form r ·M , for r ∈ I and m ∈ M , and consider the quotient M/IM . There is an
R-bilinear map

µ̄ : M ×R/I →M/IM, (m, [r]I) 7→ [r ·m]IM .

Check that the previous map is well-defined and R-bilinear. We want now to check
the universal property for the couple (M/IM, µ̄). Let µ : M × R/I → P be an
R-bilinear map towards some R-module P . Then the map5

µ(−, [1]I) : M → P, m 7→ µ(m, [1]I)

is R-linear from M to P , and vanishes on the generating set {r ·m : r ∈ I,m ∈M}
of IM : we have

µ(r ·m, [1]I) = µ(m, r · [1]I) = µ(m, [r]I) = µ(m, [0]I)

= µ(m, 0 · [0]I) = 0 · µ(m, [0]I) = 0.

Thus we get an R-linear map θ : M/IM → P . Check that θ ◦ µ̄ = µ as maps of
sets, and that θ is the only R-linear map M/IM → P with this property.

As an application, let I, I ′ ⊂ M be two ideals. Then R/I ⊗R R/I ′ ∼= R/(I, I ′) as
R-modules, where (I, I ′) is the ideal generated by I and I ′. Another application:
M ⊗R R ∼= M as R-module. Adapt the previous example to study R/I ⊗M , or
just prove the following general lemma.

2in fact, it suffices to generate M ⊗R M ′ even as an abelian group!
3Probably not much, for generic rings. In particular, one now needs to find generators of the

tensor product as an abelian group, so one in general needs a lot of generator to compensate the
lack of scalar multiplication times R in the tensor product.

4An R-module of the form R/I is usually called a cyclic R-module, and it is characterised by
admitting a generating set with a single element

5This is a special case of a general phenomenon: if R is commutative and µ : M ⊗M ′ → P is
R-bilinear, then for all m′ ∈ M ′ the map µ(−,m′) : M → P is R-linear. And similarly fixing the
first variable and letting the second vary.
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Lemma 3.8. Let R be a commutative ring and let M,M ′, P be R-modules. Then a
map of sets µ : M×M ′ → P is R-bilinear if and only if the composite µ◦swap: M ′×
M → P is R-bilinear, where swap: M ′×M →M ×M ′ is the map of sets swapping
coordinates. Hence, the two R-modules M ⊗R M ′ and M ′ ⊗R M have equivalent
universal properties and are thus isomorphic.

Ask yourself how much one can adapt the previous example to the case of non-
commutative rings R. Be careful with left and right ideals!

Example 3.9. Let again I be an ideal of R and set M ′ = R/I again. We want
to understand HomR(R/I,M) as an R-module. An R-linear map f : R/I → M is
equivalent to an R-linear map g : R → M that vanishes on the submodule I ⊂ R.
On the other hand, anR-linear map g : R→M is uniquely determined by g(1) ∈M ,
and if we want g|I ≡ 0, we need to ask r · g(1) = 0 for all r ∈ I. This is a condition
on the element g(1) that we pick as image of M .
If we define M [I] ⊂M the sub-R-module of elements m such that r ·m = 0 for all
r ∈ I, we get a bijection of sets HomR(R/I,M) ∼= M [I]. Check that this is in fact
an isomorphism of R-modules.

Ask yourself how much one can adapt the previous example to the case of non-
commutative rings R. Again, be careful with left and right ideals!
As applications of all previous examples to the case of Z-modules with a single
generator, we get the following classical table of isomorphisms, where a, b ≥ 1 are
integers, and gcd(a, b) is the greatest common divisor of a and b. Every mathe-
matician should know this table by memory and repeat it before every meal.

• HomZ(Z,Z/b) ∼= Z/b;
• HomZ(Z/a,Z) ∼= 0;
• HomZ(Z,Z) ∼= Z;
• HomZ(Z/a,Z/b) ∼= Z/gcd(a, b);
• Z⊗Z Z/b ∼= Z/b;
• Z/a⊗Z Z ∼= Z/a;
• Z⊗Z Z ∼= Z;
• Z/a⊗Z Z/b ∼= Z/gcd(a, b).

Using the distributivity of Hom and tensor over direct sums in both entries, one can
compute Hom and tensors for every finitely generated Z-module. Indeed all finitely
generated Z-modules are finite direct sums of 1-generated modules (i.e. modules
which are isomorphic to a quotient of Z).
The same holds more generally for PIDs: if R is a domain with principal ideals,
then every finitely generated module over R is isomorphic to a module of the form⊕k

i=1R/Ii, where Ii is either the zero ideal (in which case R/Ii ∼= R) or it is the
ideal (ri) of multiples of some element ri 6= 0. Moreover one can adapt the table
above, by replacing all instances of “Z” with “R”, and by reinterpreting R/a as
R/(a) (and similarly for b).

Example 3.10. Let R = Q[x] and consider the modules Qλ, which now we can
call with a more proper name, that is, Q[x]/(x − λ). For λ 6= λ′ we already saw
that

HomQ[x] (Q[x]/(x− λ),Q[x]/(x− λ′)) ∼= 0.

Now, using that Q[x] is a PID, we recover this fact from the above argument, as a
consequence of the fact that gcd(x−λ, x−λ′) = 1, i.e. the two polynomials have no
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common factor of positive degree, or i.e. the ideal (x− λ, x− λ′) ⊂ Q[x] generated
by the two polynomials coincides with the entire Q[x]. In a similar way we have

Q[x]/(x− λ)⊗Q[x] Q[x]/(x− λ′) ∼= 0.

In the previous example Q can be replaced by any field. But it is important to
remember that only if R is a field the polynomial ring R[x] is a PID.

3.5. Exact sequences. In this subsection we let R be a possibly non-commutative
ring, and we focus on left R-modules. Everything can be adapted to right R-
modules. In the case of an inclusion N ↪→ M of a submodule into a module, the
cokernel coincides with the quotient module M/N from Definition 1.6. We then
have three modules intertwined by two R-linear maps, as follows:

N M M/N,i p

where i : N →M is the inclusion and p : M →M/N is the projection.

Definition 3.11. A short exact sequence (SES) of R-modules is the datum of three
modules M ′,M,M ′′ and two R-linear maps i : M ′ →M and p : M →M ′′ with the
following properties:

(1) i is injective;
(2) p is surjective;
(3) ker(p) = Im(i); in particular this implies that i ◦ p is the zero map6.

The previous definition extrapolates precisely what happens in the situation of N ,
M and M/N . The idea of a short exact sequence is to “decompose” the middle
module M into two “smaller” modules M ′ and M ′′. Note however that the adjective
smaller has a quite different meaning in the two cases: M ′ is smaller in that it is
a submodule, M ′′ is smaller in that it is a quotient module.

Example 3.12. Let f : S → R be a homomorphism of rings, and let

M ′ M M ′′i p

be a sequence of three R-modules and two R-linear maps. Then we have a functor
f∗ : RMod → SMod by restrictions of scalars: every left R-module becomes a left
S-module, and R-linear maps are automatically S-linear. Since the condition for
being exact does not really involve the ring acting on our modules, we have that
the previous sequence is exact of left R-modules if and only if it is exact of left
S-modules. In fact, one can take S = Z, which is the initial ring with unit, and
thus consider the previous as a sequence of Z-modules/abelian groups. Upshot: a
short sequence of left R-modules is exact if and only if it is exact when considered
as a short sequence of abelian groups.

The equality “ker(p) = Im(i)” occurring in Definition 3.11 is formally the same as
we encountered when defining a presentation F1 → F0 → M of an R-module M
as a cokernel of an R-linear map between free modules. Since we encountered the
same situation twice, we should make this into a definition.

6Since we consider left modules, homomorphisms act on right, so are also composed in the
corresponding way. Here i ◦ p is the map such that (m′)i ◦ p = ((m′)i)p for all m′ ∈M ′
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Definition 3.13. An exact sequence of R-modules is the datum of an interval7

I ⊂ Z and R-modules (Mi)i∈I and R-linear maps (gi : Mi → Mi−1)i,i−1∈I such
that whenever i+ 1, i, i− 1 ∈ I the following equality of submodules of Mi holds8:
Im(gi+1) = ker(gi).

An exact sequence has thus the form

. . . Mi+1 Mi Mi−1 . . . .
gi+2 gi+1 gi gi−1

It has the property that the composition of every two consecutive maps gi+1 ◦ gi is
the zero map: this is equivalent to the containment Im(gi+1) ⊆ ker(gi), whenever
both terms are defined. But more holds: the last containment must be an equality.
We can anticipate the definition of chain complex.

Definition 3.14. A chain complex of R-modules is the datum of R-modules
(Mk)k∈Z and R-linear maps (gk : Mk → Mk−1)k∈Z such that for all k ∈ Z the
following containment of submodules of Mk holds: Im(gk+1) ⊆ ker(gk). This con-
dition is equivalent to the equality gk+1 ◦ gk = 0 as maps Mk+1 →Mk−1.

In fact Example 3.12 generalises to the fact that the functor f∗ : RMod → SMod
sends exact sequences to exact sequences, and it sends chain complexes to chain
complexes.
We gave Definition 3.13 with generic intervals I ⊆ Z for the sake of generality,
but one usually can reduce to the case I = Z. We remark the following, where
all capital letters are R-modules and 0 is the zero module, and where we omit the
indices:

• 0→ M
g→ M ′ is exact if and only if g : M → M ′ is injective, as the image

of 0→M is 0;

• M g→M ′ → 0 is exact if and only if g : M →M ′ is surjective, as the kernel
of M ′ → 0 is the entire M ′;

• 0 → M → 0 is exact if and only if M is the trivial module, as M must
inject into the trivial module (or equivalently, as the trivial module must
surject onto M);

• 0 → M
g→ M ′ → 0 is exact if and only if g : M → M ′ is an isomorphism,

putting together the first two observations;

• 0→ M ′
g′→ M

g→→ M ′′ → 0 is exact if and only if M ′
g′→ M

g→→ M ′′ is a
short exact sequence in the sense of Definition 3.11.

Hopefully the last example explains why the word “short” has been assigned to
exact sequences of length 5 with 0 at the beginning and at the end: all shorter
situations, starting and ending with a 0, can be described completely with the
words “zero module” and “isomorphism of modules”.

3.6. Split short exact sequences. Again, R is possibly non-commutative and
we focus on R-modules, but the following can be repeated almost word by word for
right R-modules.

7An interval is a subset I ⊂ Z with the property that for all a ≤ b ≤ c ∈ Z, if a, c ∈ I, then

also b ∈ I
8referring to the single equality at i ∈ I, we say that the sequence is exact “at Mi”
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Example 3.15. Let M and N be two left R-modules. Then there is a short exact
sequence

N N ⊕M M,
ιN πM

using the maps from Examples 1.21 and 1.24.

The previous SES has a special property: the surjective map πM : N ⊕M → M
admits a section, namely the R-linear map ιM . By “section” we mean an R-

linear map s : M → N ⊕M such that the composite M
s→ N ⊕M πM→ M is the

identity of M . The fact that πM is surjective only implies that there is a section
s : M → N ⊕M which is a map of sets. Finding a section which is also R-linear is
much more difficult, and not always possible for a generic SES.

Definition 3.16. Let

M ′ M M ′′i p

be a short exact sequence of left R-modules. We say that it is a split short exact
sequence if the surjective, R-linear map p : M →M ′′ admits an R-linear section.

Being split is a property of a SES. The following proposition gives equivalent char-
acterisations of split SES.

Proposition 3.17. Let

M ′ M M ′′i p

be a SES. Then the following are equivalent (each condition implies each of the
other):

• there exists an R-linear map s : M ′′ →M , called section, such that s ◦ p =
IdM ′′ ;
• there exists an R-linear map r : M →M ′, called retraction, such that i◦r =

IdM ′ ;
• there is an isomorphism Φ: M → M ′ ⊕M ′′ making the following diagram

commute

M ′ M M ′′

M ′ M ′ ⊕M ′′ M ′′

i

IdM′

p

Φ IdM′′

ιM′ πM′′

I leave the proof of Proposition 3.17 as exercise. Constructing r from s or viceversa
as maps of abelian groups is not difficult; checking that the obtained maps are
indeed R-linear is an essential part of the proof.

Example 3.18. Let R be a field. Then every short exact sequence is split: given a
basis S ′′ of the vector space M ′′, we can define s : M ′′ →M by mapping each basis
element s′′ ∈ S ′′ to some element in the preimage p−1(s′′) ⊂ M , and extending
linearly over R. Check that the R-linear extension is indeed a section in the sense
of Proposition 3.17.
The same holds when R is any ring and M ′′ is a free module: also in this case
we have a basis with the same, needed formal properties to make the previous
argument work.

In the previous example, note that in general each of the fibres p−1(s′′) contains
more than one element; thus there are in general more possibilities to choose a
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section s of p : M → M ′′. In general, if M ′ → M → M ′′ is a split SES, it can
be split “in many different ways”, i.e. there can be multiple choices of a section
witnessing the splitness. Similarly, there can be many retractions r : M → M ′, as
soon as at least one exists.

Example 3.19. Let ` be a prime number and consider the SES of Z-modules

Z/` Z/`2 Z/`,ι π

where the first map sends [m]` 7→ [m`]`2 and the second map sends [n]`2 to [n]`.
Then the preimage π−1([1]`) contains the elements [`n + 1]`2 for varying n, and
all these elements don’t vanish when multiplied by `. As a result, there is only a
set-theoretic section of the surjective map π, but not a Z-linear section.
Compare now with the following SES

Z/` Z/`⊕ Z/` Z/`,ι π

which is a particular case of Example 3.15. The latter SES is split, and it has the
same left and right term. Upshot: there can be SES with equal first and third term,
and yet with very different behaviour (e.g. one is split, the other is not). This does
not happen over a field.

Example 3.20. Let F be a field and consider R = F[x]. Then we have a SES of
F[x]-modules

F[x]/(x) F[x]/(x2) F[x]/(x),ι π

where the first map sends [f(x)]x 7→ [xf(x)]x2 and the second map sends [g(x)]x2 7→
[g(x)]x. We want to argue that there is no F[x]-linear section of π; suppose by absurd
that such s : F[x]/(x) → F[x]/(x2) exists, and let g(x) be a polynomial such that
s([1]x) = [g(x)]x2 . Then since s is a section, we must have that g(x) has constant
term equal to 1, i.e. g(x) is of the form 1 + xf(x) for some polynomial f(x). We
then have

[0]x2 = s([0]x) = s(x · [1]x) = x · s([1]x) = x · [1 + xf(x)]x2 = [x]x2 6= [0]x2 ,

which is a contradiction. Thus the previous is a non-split SES of F[x]-modules. Note
however that if we consider it as a sequence of F-modules, i.e. F-vector spaces, then
it is split. We can find a F-linear section, but not a F[x]-linear section.
Upshot: being a SES is a property of the underlying abelian groups; being split
strongly depends on the ring we are working on.

4. Bimodules and additive functors

4.1. Bimodules. We can combine the notion of left and right module into a single
notion of bimodule.

Definition 4.1. Let R and R′ be two associative, unital rings. An R−R′-bimodule
M is an abelian groups M endowed with a structure of left R-module and also with
a structure of right R′-module, such that for all r ∈ R, m ∈M and r′ ∈ R′ we have

r · (m · r′) = (r ·m) · r′.

The last condition is a form of compatibility between left and right multiplication,
or a form of associativity of all types of multiplication.
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Example 4.2. Each ring R is an R−R-bimodule, by using the ring multiplication
in both cases. The compatibility of left and right scalar multiplication is precisely
the associative property of the product of R.

Example 4.3. Let R be commutative. Then each R-module M is naturally an
R − R-bimodule. The scalar multiplication R ×M → M , which is traditionally
expressed as a left scalar multiplication (r,m) 7→ r ·m, gives rise to a map of sets
M × R → R just by setting (m, r) 7→ r ·m. Commutativity of R ensures that the
second map makes M into a right R-module; moreover the two maps together make
M into an R−R-bimodule.

Example 4.4. Let R be non-commutative and M be a left R-module. Then
EndR(M) := HomR(M,M) is an abelian group (pointwise sum of R-linear maps),
but is also endowed with a binary, associative operation, given by composing func-
tions: (f, g) 7→ f ◦g. Check that the composition is distributive with respect to the
sum, i.e. the following holds, for all f, f ′, g ∈ EndR(M):

• (f + f ′) ◦ g = f ◦ g + f ′ ◦ g;
• g ◦ (f + f ′) = g ◦ f + g ◦ f ′.

Moreover IdM is a left and right neutral element for ◦. It follows that EndR(M) is
an associative ring with unit. Finally, we can consider M as a right module over
this ring, by setting simply, for m ∈M and f ∈ EndR)(M)

m · f := (m)f.

The two structures on M combine to an R− EndR(M)-bimodule structure on M .

Note that in the previous example it is very important to use the same ring R when
introducing EndR(M). For instance, we can also consider M as an abelian group
and thus as a right EndZ(M)-module, but then it is in general not true that M
becomes an R− EndZ(M)-bimodule.

Example 4.5. Let M be a left R-module. Then the fact that M is an abelian
group makes M into a Z-module, and we can consider M as a R− Z-bimodule.

Recall that in the non-commutative setting, in general, HomR and ⊗R only produce
abelian groups. However, if we use bimodules as inputs, we usually get modules as
outputs. See the following examples, where R and S are associative unital rings.

Example 4.6. Let M be an R− S-bimodule, and let M ′ be a left R-module. Let
HomR(M,M ′) be the set of R-linear maps of left R-modules. Then HomR(M,M ′)
is naturally a left S-module, by setting, for s ∈ S, f ∈ HomR(M,M ′) and m ∈M ,

(m)(s · f) = (m · s)f.

The map s · f is indeed R-linear, as for all r ∈ R we have

r · ((m)(s · f)) = r · ((m · s)f) = (r · (m · s))f = ((r ·m) · s)f = (r ·m)(s · f).

Example 4.7. Let M ′ be an R − S-bimodule, and let M be a left R-module.
Then HomR(M,M ′) is naturally a right S-module, by setting, for s ∈ S, f ∈
HomR(M,M ′) and m ∈M ,

(m)(f · s) = (m · f) · s.

Check that the map f · s is indeed R-linear.
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Example 4.8. Let S′ be a third associative ring9, and let M be a S−R-bimodule
and M ′ be a R − S′-bimodule. Then the abelian group M ⊗R M ′ has a natural
structure of S − S′-bimodule, as we argue in the following.
In order to give a left S-module structure on M ⊗RM ′, we need to define, for all
s ∈ S, a map of abelian groups s · − : M ⊗R M ′ → M ⊗R M ′. We wish to define
this map on simple tensors m ⊗m′, which generate the abelian group M ⊗R M ′,
by the formula

s · (m⊗m′) = (s ·m)⊗m′ ∈M ⊗RM ′,
and then “extend Z-linearly/additively”. One has to check that the previous as-
signment really induces a map of abelian groups. If simple tensors were a basis of
M ⊗RM ′ as free abelian group, this would be automatic; however, it is rather true
that the elements (m,m′) are a basis of a free abelian group A =

⊕
(m,m′)∈M×M ′ Z,

and M ⊗R M ′ is a quotient of A by a sub-abelian group B (see Definition 2.16.
To be precise, we should therefore first define a homomorphism of abelian groups
s∗ : A→ A by setting s∗(m,m

′) = (s ·m,m′) on the standard basis of A, and then
check that this homomorphism descends to a homomorphism s · − : M ⊗R M ′ →
M ⊗RM ′ on the quotient. Among other things one has to check the equality, for
all r ∈ R,

[s∗(m · r,m′)]B = [s∗(m, r ·m′)]B .
By definition of s∗ on basis elements, we have indeed

s∗(m · r,m′) = (s · (m · r),m′) = (s ·m) · r,m′);
s∗(m, r ·m′) = (s ·m, r ·m′);

[(s ·m) · r,m′)]B = [(s ·m, r ·m′)]B .
The first equality follows from the axioms of S −R-bimodule on M ; the third is a
consequence of property (3) in Definition 2.16 applied to the elements (s ·m) ∈M ,
(m′ · s′) ∈ M ′ and r ∈ R. This shows that for all s ∈ S we get an additive map
s ·− : M⊗RM ′ →M⊗RM ′. One then has to check that these maps fit together in
a left S-module structure on M ⊗RM ′. For instance, one has to check that s1s2 ·−
is the composition (s1 · −) ◦ (s2 · −). But to check that two maps of abelian groups
M ⊗R M → M ⊗R M coincide it really suffices to check that they coincide on a
generating set of M ⊗R M as abelian groups. For m ∈ M and m′ ∈ M ′ we have
indeed

(s1s2) · (m⊗m′) = ((s1s2) ·m)⊗m′ = (s1 · (s2 ·m))⊗m′

= s1 · ((s2 ·m)⊗m′) = s1 · (s2 · (m⊗m′)).
After that, one has to repeat the argument on the other side, and check that there
is a right S′-module structure on M ⊗RM ′ satisfying, for all m ∈M , m′ ∈M ′ and
s′ ∈ S′,

(m⊗m′) · s′ = m⊗ (m′ · s′) ∈M ⊗RM ′.
And eventually one has to check that the two structures are compatible, i.e. one
really get an S − S′-bimodule structure on M ⊗R M ′: again, the maps of abelian
groups (s ·−)◦(−·s′) and (−·s′)◦(s ·−) agree on the generating set of M⊗RM ′ as
abelian group given by simple tensors (check this!), hence they are the same map
of abelian groups M ⊗RM ′ →M ⊗RM ′.

9We sake the greatest generality; setting some of the rings to be Z yields more specific examples
of the construction
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The heuristic principle governing the previous examples is the following: let M
and N be abelian groups with an action of R by scalar multiplication, such that
HomR(M,N) is defined (action on the same side), or such that M ⊗RN is defined
(action on opposite sides). Then every action of a ring S on either M or N , which
is compatible with the R-action, should induce an action of S on HomR(M,N), or
respectively on M ⊗R N .

4.2. Hom-tensor adjunction. Let R be a ring, M be a right R-module, M ′ be
a left R-module and P be an abelian group. On the one hand we can consider the
abelian group

HomZ(M ⊗RM ′, P );

on the other hand we have a left R-module structure on HomZ(M,P ), using that
M is a Z−R-bimodule; this leads to a well-defined abelian group

HomR (M ′,HomZ(M,P )) .

Proposition 4.9. In the above setting, there is a canonical bijection of abelian
groups

HomZ(M ⊗RM ′, P ) ∼= HomR (M ′,HomZ(M,P )) .

In the following it is convenient to consider M and P as left Z-modules, and thus
let Z-linear maps act on right. Given an additive map f : M ⊗M ′ → P , one can
define for each m′ ∈M ′ an additive map

m′f : M → P, m 7→ (m⊗m′)f.

The assignment m′ 7→ m′f is R-linear: besides being additive (check it!) we have,
for all r ∈ R

(m)(r · m′f) = (m · r)m′f = ((m · r)⊗m′)f = (m⊗ (r ·m′))f = (m)r·m′f.

Thus we get an R-linear map g : M ′ → HomZ(M,P ).
In the other direction, let g : M ′ → HomZ(M,P ) be an R-linear map. Then the
assignment

M ×M ′ → P, (m,m′) 7→ (m)((m′)g)

is an R-bilinear map out of M×M ′ (check it carefully!), hence it induces an additive
map f : M ⊗RM ′ → P .

Exercise 4.10. Prove Proposition 4.9 by showing that the above constructions give
inverse bijections of the sets HomZ(M⊗RM ′, P ) and HomR (M ′,HomZ(M,P )), and
checking that these bijections are compatible with the structure of abelian groups
that these sets have.

A variation of the previous is the following: if M is an S−R-bimodule, M ′ is a left
R-module and P is a left S-module, then M⊗RM ′ is a left S-module, HomS(M,P )
is a left R-module, and there is a canonical isomorphism of abelian groups

HomS(M ⊗RM ′, P ) ∼= HomR(M ′,HomS(M,P )).

Why is this subsection called Hom-tensor adjunction? Focusing on this second
example, we note that an S −R-bimodule M gives rise to a functor

M ⊗R − : RMod→ SMod,
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sending an object M ′ to M⊗M ′, and an R-linear map f : M ′1 →M ′2 to the S-linear
map IdM ⊗R f : M ⊗RM ′1 →M ⊗RM ′2. We also note that an S −R-bimodule M
gives rise to a functor

HomR(M,−) : SMod→ RMod,

sending an object P to HomS(M,P ), and an S-linear map g : P1 → P2 to the map
− ◦ g : HomS(M,P1) → HomS(M,P2). The previous discussion shows that the
two functors are adjoint, in particular the functor M ⊗R − is left adjoint to the
functor HomR(M,−).10 But you have noticed that there is more to be said: the
two naturally equivalent functors

HomS(M ⊗R −,−) , HomR(−,HomS(M,−)) : RModop � SMod→ Set

actually don’t only land in the category of sets, but in the “richer” category of
abelian groups.

4.3. Z-linear categories and additive categories. In this subsection we focus
on left modules; similar considerations hold for right modules.
A priori, for a (locally small) category C and two objects x, y in C, the morphisms
HomC(x, y) only form a set. However, we saw that for two left R-modules M,N ,
the set HomR(M,N) has a natural structure of abelian group, by pointwise sum of
functions.
Moreover, for three objects x, y, z in C, the composition law is defined as a map of
sets

◦x,y,z : HomC(x, y)×HomC(y, z)→ HomC(x, z);

however, if M,N,P are left R-modules, the map

◦M,N,P : HomR(M,N)×HomR(N,P )→ HomR(M,P )

is a Z-bilinear map from a product of Z-modules (abelian groups) to a Z-module
(abelian group): for example, for f, f ′ : M → N and g : N → P we have, for
m ∈M ,

(m)((f + f ′) ◦ g) = ((m)(f + f ′))g = ((m)f + (m)f ′)g = ((m)f)g + ((m)f ′)g

= (m)f ◦ g + (m)f ′ ◦ g,

i.e. (f + f ′) ◦ g = f ◦ g + f ′ ◦ g. We abstract this in the following definition.

Definition 4.11. A category C is enriched in abelian groups/ enriched in Z-
modules/ a Z-linear category if for all objects x, y ∈ C the set HomC(x, y) is en-
dowed with a structure of abelian group, in such a way that all composition laws
HomC(x, y)×HomC(y, z)→ HomC(x, z) are Z-bilinear.

Example 4.12. The category RMod is enriched in Z-modules. Any subcategory
of RMod obtained by selecting some left R-modules, and taking all possible R-
linear maps between the selected modules11 is again a Z-linear category. Example:
the category RModfree of free left R-modules and R-linear maps between free left
R-modules, is a Z-linear category.

10To be precise, checking that for allM ′ and P we have a bijection of sets HomS(M⊗RM
′, P ) ∼=

HomR(M ′,HomS(M,P )) does not suffice: one needs to check that these bijections, taken together,

form a natural transformation of functors RModop � SMod→ Set.
11This type of subcategory is called a full subcategory
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Example 4.13. If C is a Z-linear category, then the opposite category Cop is also
Z-linear, by declaring the abelian group structure on the set HomCop(x, y) to be
that of the set HomC(y, x), leveraging on the fact that these sets are in bijection.
The fact that compositions are Z-bilinear is a consequence of Lemma 3.8.

Example 4.14. Let R be an associative ring. We define a category CR with a single
object ∗, and we set HomCR(∗, ∗) = R. The identity of ∗ is 1 ∈ R; composition of
morphisms is given by multiplication in R. Moreover, the additive structure of R
is used to make HomCR(∗, ∗) into an abelian group, and the axioms of ring ensure
that the composition map HomCR(∗, ∗)×HomCR(∗, ∗)→ HomCR(∗, ∗) is Z-bilinear.
Hence CR is a category enriched in abelian groups.

For a ring R, we already saw that the category RMod admits all products and
coproducts, even infinite ones; we also saw that finite products are isomorphic to
the corresponding finite coproducts (direct sums); in particular the terminal object
of RMod is isomorphic to the initial object of RMod.
Example 4.14 shows that these additional properties don’t follows from being en-
riched in Z-modules: the category CR, for example, admits no initial nor terminal
object, and for instance there is no object in CR with the properties of a categorical
coproduct ∗ t ∗ or of a categorical product ∗ × ∗. We will be interested in the
existence of finite products and coproducts, so we give the following definition.

Definition 4.15. A category C is additive if it is enriched in Z-modules and if,
moreover, for all finite collection (xi)i∈I of objects in C, there exists a product∏
i∈I xi in C.

Exercise 4.16. Prove that the above definition is complete: show that if C is Z-
linear and admits all finite products, then it also admits all finite coproducts and
these coincide with the products.
More precisely, if (xi)i∈I is a finite collection of objects, and if

(∏
i∈I xi, (πi)i∈I

)
is a product, then we can define maps ιj : xj →

∏
i∈I xi for all j ∈ I, by using the

universal property of the product and declaring πj ◦ ιj = Idxj
and πi ◦ ιj = 0 for

all i 6= j, where “0” is the neutral element in the abelian group HomC(xj , xi).
Prove that

(∏
i∈I xi, (ιi)i∈I

)
satisfies the universal property for being a coproduct

of (xi)i∈I in C.
Hint: start by proving that a terminal object t ∈ C (an empty product) is also
initial: if x ∈ C and f : t→ x, then f = f ◦ Idt = f ◦ 0 = 0; justify all steps of the
previous chain of equalities.

In particular, in an additive category all finite products are isomorphic to the
corresponding finite coproducts. Saying that RMod is additive acknowledges the
existence of finite direct sums of left R-modules. Note that being an additive
category is a property that a Z-linear category may or may not have; instead,
being Z-linear is an additional structure put on a category.12

Example 4.17. If C is additive, then so is Cop. Example 4.13 shows

12In fact, if a category is such that all finite products and coproducts exist and coincide, then

it automatically becomes enriched in abelian monoids; as a consequence, one can define additive

categories as those categories with the property that all finite products and coproducts exist and
coincide, and such that the automatic enrichment in abelian monoids is in fact an enrichment in

abelian groups.
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4.4. Additive functors.

Definition 4.18. A functor F : C → C′ between Z-linear categories is a Z-linear
functor/ functor enriched in Z-modules if for all x1, x2 ∈ C the map of sets

Fx1,x2 : HomC(x1, x2)→ HomC′(F (x1), F (x2))

is in fact a homomorphism of abelian groups. Especially when both C and C′ are
additive, one also says that F is an additive functor.

In the case in which C and C′ are both additive, a Z-linear functor has an additional
property: it preserves finite products and coproducts.

Exercise 4.19. Let F : C → C′ be a Z-linear functor between additive categories.
Let (xi)i∈I be a finite collection of objects in C, let (ȳ, (π̄i)i∈I) be a categorical
product of (xi)i∈I , and let (z̄, (ῑi)i∈I) be a categorical coproduct of (xi)i∈I .

13

Then (F (ȳ), (F (π̄i))i∈I) is a categorical product of the collection (F (xi))i∈I , and
(F (z̄), (F (ῑi))i∈I) is a categorical coproduct of the collection (F (xi))i∈I .
For instance, let x be a zero object in C, i.e. an object which is both initial and
terminal. Let x′ = F (x) ∈ C. Since HomC(x, x) is the zero abelian group, we have
Idx = 0 ∈ HomC(x, x). It follows that Idx′ = F (Idx) = F (0) = 0 ∈ HomC′(x

′, x′):
here we use that a functor sends identity morphisms to identity morphisms, and
an additive functor sends 0 morphisms to 0 morphisms. Conclude that x′ is a
zero object in C′: for all y ∈ C′, any morphism f : x′ → y can be written as
f ◦ Idx′ = f ◦ 0 = 0; and any morphism f : y → x′ similarly vanishes.

Recall Example 4.13. If C and C′ are Z-linear categories, then Cop is also Z-linear,
so we can make sense of a Z-linear contravariant functor from C to C′, which is just
a Z-linear functor F : Cop → C′.

Example 4.20. Let R be a commutative ring and consider the category RMod of
R-modules. Consider the following three functors F1, F2, F3 : RMod→ RMod:

• F1(M) = R and F1(f : M → N) = (IdR : R→ R);
• F2(M) = M ⊕M and F2(f : M → N) = (f ⊕ f : M ⊕M → N ⊕N), where
f ⊕ f maps (m1,m2) to (f(m1), f(m2));

• F3(M) = M ⊗RM and F3(f : M → N) = (f ⊗R f : M ⊗RM → N ⊗R N).

Then F2 is additive, as the map HomR(M,N)→ HomR(M ⊕M,N ⊕N) given by
f 7→ f ⊕ f is a homomorphism of abelian groups, for all M,N . Instead neither F1

nor F3 are additive, at least for R = Z: for example, setting M = N = Z, the map

Z ∼= HomZ(M,N)→ HomZ(F1(M), F1(N)) ∼= Z
induced by F1 is the map Z → Z sending all integers to 1, which is not a homo-
morphism of abelian groups; similarly the map

Z ∼= HomZ(M,N)→ HomZ(F3(M), F3(N)) ∼= Z
induced by F2 is the map Z → Z sending n 7→ n2, at least after identifying M ⊗Z
M = N⊗ZN = Z⊗ZZ with Z in a canonical way. This map is not a homomorphism
of abelian groups.

Example 4.21. Let R be any ring and let N be a left R-module. Then we have
the following additive functors:

13Note that since C is additive, you can assume that ȳ and z̄ are the same object of C; after
all, they are isomorphic objects.
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• HomR(N,−) : RMod→ ZMod;
• HomR(−, N) : RModop → ZMod;
• − ⊗R N : ModR → ZMod.

Note that the first is a covariant functor out of RMod, whereas the second is a
contravariant functor out of RMod, i.e. a functor out of RModop. The third is a
covariant functor out of the category ModR of right R-modules. Similarly, if N ′ is
a right R-module, we obtain an additive functor

• HomR(N ′,−) : ModR → ZMod;
• HomR(−, N ′) : ModR

op → ZMod;
• N ′ ⊗R − : RMod→ ZMod.

Using bimodules one can change the target categories with more interesting cate-
gories of modules over some other ring S.

Check carefully that the functors from Example 4.21 are additive. For example,
let us check that the first functor HomR(N,−) : RMod → ZMod is additive. Let
M,M ′ be left R-modules. We then have a map of sets

α : HomR(M,M ′)→ HomZ(HomR(N,M),HomR(N,M ′)), f 7→ (g 7→ g ◦ f).

If we evaluate α(f1 +f2), we obtain the map g 7→ g ◦ (f1 +f2), which coincides with
the sum of the maps g 7→ g ◦ f1 and g 7→ g ◦ f2. So α is in fact a homomorphism
of abelian groups, i.e. the first functor is additive.

4.5. Exact functors. In this section we focus for simplicity on left modules, and
consider functors F : RMod→ SMod for two rings R and S; but similar considera-
tions could be done for right modules, or one can consider functors from a category
of left modules to a category of right modules. As we will see, what we really need
are categories where there is a well-behaved notion of “kernel” of morphisms. We
will expand in this abstract direction in a future lecture.
Consider an exact sequence of left R-modules

. . . Mi+1 Mi Mi−1 . . . .
gi+2 gi+1 gi gi−1

and let F : RMod→ SMod be an additive functor. Then applying F to the sequence
above we obtain a sequence

. . . F (Mi+1) F (Mi) F (Mi−1) . . . .
F (gi+2) F (gi+1) F (gi) F (gi−1)

Recall that the condition Im(gi+1) ⊆ ker(gi) can be expressed by the equality
gi+1 ◦gi = 0. Applying F , which is additive, we obtain F (gi+1)◦F (gi) = F (0) = 0,
which can be reformulated as Im(F (gi+1)) ⊆ ker(F (gi)), i.e. the second sequence
is a chain complex. Can we also use that F is additive to prove that the second
sequence is in fact an exact sequence? In other words, can we use that F is additive
to prove the other containment Im(F (gi+1)) ⊇ ker(F (gi))? Unfortunately, no. The
fact that an additive functor in general only transforms exact sequences into chain
complexes is one of the reason for the existence of homological algebra.

Example 4.22. Consider the short exact sequence of abelian groups

0 Z Z Z/2 0·2 [−]2
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If we apply the functor −⊗Z Z/2, we obtain a short exact sequence of the form

0 Z⊗Z Z/2 Z⊗Z Z/2 Z/2⊗Z Z/2 0.

Using the table from Subsection 3.4 we can replace the above with

0 Z/2 Z/2 Z/2 0.

It doesn’t take long to prove that the left map Z/2→ Z/2 is the zero map, whereas
the right map Z/2→ Z/2 is an isomorphism. However, it should be clear that the
last short sequence cannot be exact: otherwise there would be a surjection of Z/2
onto Z/2 with kernel isomorphic to Z/2, and this is impossible by simply counting
cardinalities.
This shows that an additive functor can indeed break the exactness, returning only
a chain complex.

Example 4.23. The SES in the previous example is not split, and this is not a
case. Indeed, if F : RMod→ SMod is an additive functor, and if

0 M ′ M M ′′ 0i p

is a split short exact sequence of left R-modules, then one can use any R-linear
section s : M ′′ →M to exhibit M as the direct sum M ′ ⊕M ′′, using that the map
i⊕ s : M ′⊕M ′′ →M given by (m′,m′′) 7→ i(m′) + s(m′′) is an isomorphism. Since
F is additive, we have a natural isomorphism F (M ′ ⊕M ′′) ∼= F (M ′) ⊕ F (M ′′);
moreover F (i ⊕ s) is an isomorphism between F (M ′ ⊕M ′′) and F (M). It follows
that

0 F (M ′) F (M) F (M ′′) 0
F (i) F (p)

is a split exact sequence, with an example of section of F (p) given by F (s).

Motivated by the previous, we give a definition.

Definition 4.24. An additive functor F : RMod→ SMod is exact if it sends exact
sequences to exact sequences.

For instance, the functor F2 from Example 4.20 is exact: check that if

. . . Mi+1 Mi Mi−1 . . .
gi+2 gi+1 gi gi−1

is exact, then also the following sequence is exact

. . . Mi+1 ⊕Mi+1 Mi ⊕Mi Mi−1 ⊕Mi−1 . . . .
gi+2⊕gi+2 gi+1⊕gi+1 gi⊕gi gi−1⊕gi−1

Another example of exact functor is, for a map of rings f : R → S, the restriction
of scalars functor f∗ : SMod→ RMod, as in fact we already checked last time.
We will prove next week the following proposition (but you can try to prove it as
an exercise).

Proposition 4.25. Let F : RMod→ SMod be an additive functor that sends short
exact sequences to short exact sequences. Then F is an exact functor.

In fact, all examples of additive functors from Example 4.21 are not exact functors
for a generic ring R (if R is a field, all these functors are exact and life is wonderful).
However, these functors fail very little from being exact, especially when evaluated
at exact sequences of the form 0→M ′ →M →M ′′ or M ′ →M →M ′′ → 0:
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(1) if F is one of the following covariant functors
• HomR(N,−) : RMod→ ZMod;
• HomR(N ′,−) : ModR → ZMod;

then an exact sequence in the source category of the form 0→M ′ →M →
M ′′ is sent to the sequence 0 = F (0) → F (M ′) → F (M) → F (M ′′) which
turns out to be exact at F (M ′) and at F (M);

(2) if F is one of the following contravariant functors
• HomR(−, N) : RModop → ZMod;
• HomR(−, N ′) : ModR

op → ZMod;
then an exact sequence in the source category of the form M ′ → M →
M ′′ → 0 is sent to the sequence 0 = F (0) → F (M ′′) → F (M) → F (M ′)
which turns out to be exact at F (M ′′) and at F (M);

(3) if F is one of the following covariant functors
• N ′ ⊗R − : RMod→ ZMod.
• − ⊗R N : ModR → ZMod.

then an exact sequence in the source category of the form M ′ → M →
M ′′ → 0 is sent to the sequence F (M ′) → F (M) → F (M ′′) → F (0) = 0
which turns out to be exact at F (M) and at F (M ′′).

Exercise 4.26. Prove the previous statements. For example, let us prove that
−⊗R N : ModR → ZMod sends an exact sequence of right R-modules of the form

M ′ M M ′′ 0
g′ g

to an exact sequence of abelian groups

M ′ ⊗R N M ⊗R N M ′′ ⊗R N 0.
g′⊗RIdN g⊗RIdN

First, we have to check that g⊗R IdN is surjective. This follows from recalling that
M ′′⊗RN is generated as abelian group by the simple tensors m′′⊗n; using that g
is surjective (and using also IdN : N → N is surjective!), each simple tensor m′′⊗n
can be written as the image along g ⊗R IdN of a simple tensor in M ⊗R N . Thus
the image of g ⊗R IdN contains generators of M ′′ ⊗R N as abelian groups, hence
g ⊗R IdN is surjective.
Next, we can leverage on the fact that − ⊗R N : ModR → ZMod is an additive
functor and get the containment Im(g′ ⊗R IdN ) ⊆ ker(g ⊗R IdN ).
Finally, we have to prove the inclusion Im(g′ ⊗R IdN ) ⊇ ker(g ⊗R IdN ). At this
point it helps to remember Definition 2.16. The tensor product M ⊗R N can be
constructed as a quotient of the free abelian group AM,N =

⊕
(m,n)∈M×N Z, with

basis the set M × N , by a certain subgroup BM,N . Similarly, M ′′ ⊗R N can be
constructed as a quotient of the free abelian group AM ′′,N by a subgroup BM ′′,N .
The following composition of maps of abelian groups is surjective, as both of them
are surjective (for the first, use that g is surjective)

AM,N AM ′′,N M ′′ ⊗R N,
g×IdN pM′′,N

where g×IdN : AM,N → AM ′′,N is defined on basis elements by (m,n) 7→ (g(m), n),
and pM ′′,N : AM ′′,N → AM ′′,N/BM ′′,N . It follows that the kernel of the composite
ψ := pM ′′,n ◦ (g × IdN ) can be generated as a sub-abelian group of AM,N by the
union S ∪ S ′, where S and S ′ are well-chosen subsets of AM,N :
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• we choose a set S ⊂ AM,N generating the kernel of g × IdN : AM,N →
AM ′′,N ;
• we choose a set S ′ ⊂ AM,N such that the image (g × IdN )(S ′) ⊂ AM ′′,N

generates the kernel of pM ′′,N , that is, BM ′′,N .

We set S to be the set of all differences (m+g′(m′), n)− (m,n) for varying m ∈M ,
m′ ∈M ′ and n ∈ N : here we use that two elements of M sent along g to the same
element of M ′′ have the form m and m + g′(m′) for some m ∈ M and m′ ∈ M ′,
because Im(g′) = ker(g).
We set S ′ to be a set of generators of BM,N ; check that indeed BM,N surjects onto
BM ′′,N , using that g : M → M ′′ is surjective, and the description of generators of
both abelian groups from Definition 2.16.
Now take an element x ∈M ⊗R N with x ∈ ker(g ⊗ IdN ), and lift x to an element
y ∈ AM,N along pM,N : AM,N →M⊗RN , i.e. choose y such that pM,N (y) = x. The
hypothesis on x ensures that ψ(y) = 0. It follows that y can be generated Z-linearly
using the elements of S and of S ′. It follows that x can be generated Z-linearly using
the elements of pM,N (S) and of pM,N (S ′). Now note that pM,N (S ′) = {0}, whereas
pM,N (S) is the set of elements of M ⊗R N of the form (m+ g′(m′))⊗ n−m⊗ n,
for varying m ∈ M , m′ ∈ M ′ and n ∈ N ; the previous element can be written as
g′(m) ⊗ n in M ⊗R N , i.e. it is a simple tensor in the image of g′ ⊗R IdN . As a
result, x is generated by simple tensors in the image of g′⊗R IdN , which suffices to
ensure x ∈ Im(g′ ⊗ IdN ). The conclusion is that ker(g ⊗R IdN ) ⊆ Im(g′ ⊗ IdN ).

Motivated by the previous discussion, we give a definition.

Definition 4.27. Let C and C′ be categories of left or of right modules over a ring,
and let F : C → C′ be a covariant or a contravariant functor. We say that F is right
exact if either of the following holds:

• F is covariant and sends exact sequences of the form M ′ →M →M ′′ → 0
to exact sequences of the form F (M ′)→ F (M)→ F (M ′′)→ 0;
• F is contravariant and sends exact sequences of the form 0→M ′ →M →
M ′′ to exact sequences of the form F (M ′′)→ F (M)→ F (M ′)→ 0.

We say that F is left exact if either of the following holds:

• F is covariant and sends exact sequences of the form 0→M ′ →M →M ′′

to exact sequences of the form 0→ F (M ′)→ F (M)→ F (M ′′);
• F is contravariant and sends exact sequences of the form M ′ → M →
M ′′ → 0 to exact sequences of the form 0→ F (M ′′)→ F (M)→ F (M ′).

The convention in the terminology is that a right exact functor produces exact
sequences in which “0” is on right; and similarly for a left exact functor.

Example 4.28. An additive functor may be neither left nor right exact. For
example, let R be commutative, let N be an R-module, and take the covariant
functor F : RMod → RMod given by F (M) = M ⊗R N ⊕ HomR(N,M). Then F
is additive (in general, a direct sum of additive functors is additive), but it is in
general neither left exact nor right exact.

Thinking again of the functors from Example 4.21, it would be nice to identify
those left R-modules N for which any of the functors HomR(N,−), HomR(−, N)
and −⊗R N is an exact functor.
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Definition 4.29. A left R-module N is projective if the following functor is exact

HomR(N,−) : RMod→ ZMod.

A left R-module N is injective if the following functor is exact

HomR(−, N) : RModop → ZMod.

A left R-module N is flat if the following functor is exact

−⊗R N : ModR → ZMod.

Similarly, one defines projective, injective and flat right R-modules.

Example 4.30. ConsiderR as anR−R-bimodule. We can consider HomR(R,−) as
a functor RMod→ RMod, and this functor is naturally isomorphic to the identity
functor of the category RMod, which is an exact functor. The forgetful functor

RMod → ZMod, sending a module to its underlying abelian group, can be seen as
a particular case of restriction of scalars, corresponding to the unique map of rings
Z → R; in particular, this forgetful functor is also exact. The composition is the
functor HomR(R,−) : RMod→ ZMod, which then is also exact: this is the functor
that one immediately obtains by considering R only as a left R-module. It follows
that R is a projective left R-module.
Consider now again R as an R − R-bimodule. Use that − ⊗ R can be considered
as a functor ModR → ModR, and as such it is naturally isomorphic to the identity
functor of ModR. composing with a forgetful functor as above, we conclude that R
is a flat left R-module.

We will see more examples next time.

5. Projective, injective, flat modules

Also in this lecture, we focus on categories of left modules, but all results can be
adapted to right modules as well.

5.1. Proof of Proposition 4.25. Let F : RMod→ SMod be a (covariant) additive
functor sending short exact sequences to short exact sequences: that is, for every
short exact sequence of left R-modules

0 M ′ M M ′′ 0i p

also the following is a short exact sequence, of left S-modules

0 F (M ′) F (M) F (M ′′) 0.
F (i) F (p)

Consider now a generic exact sequence of left R-modules

. . . Mj+1 Mj Mj−1 . . .
gj+2 gj+1 gj gj−1

We can write kernel and image of every map, and expand the diagram as follows

. . . ker(gj+1) Im(gj) ker(gj−1) . . .

. . . Mj+1 Mj Mj−1, . . .

. . . Im(gj+1) ker(gj) Im(gj−1) . . .

ij+1 ij−1

gj+2 gj+1

pj+1

gj

pj

gj−1

pj−1ij



38 ANDREA BIANCHI

Note that every column is a short exact sequence of left R-modules: the map ij
is the inclusion of ker(gj) into Mj , and the map pj is the same as the map gj ,
but considering Im(gj) ⊆ Mj−1 as target. Equalities are meant as equalities of
submodules, and are guaranteed by the exactness. Every square is commutative.
Now we apply F and obtain a diagram of left S-modules

. . . F (ker(gj+1)) F (Im(gj)) F (ker(gj−1)) . . .

. . . F (Mj+1) F (Mj) F (Mj−1), . . .

. . . F (Im(gj+1)) F (ker(gj)) F (Im(gj−1)) . . .

F (ij+1) F (ij−1)

F (gj+2) F (gj+1)

F (pj+1)

F (gj)

F (pj)

F (gj−1)

F (pj−1)F (ij)

The hypothesis on F ensures that every column of the last diagram is a short exact
sequence. Since F is a functor, we also obtain that equalities of objects keep being
equalities of objects, and commutative squares are sent to commutative squares.
The map F (gj) : F (Mj)→ F (Mj−1) is written as a composition F (pj) ◦F (ij−1) of
a (surjective) map F (pj) and an injective map F (ij). It follows that ker(F (gj)) =
ker(F (pj)) ⊆ Mj . By exactness of the middle column, we also have ker(F (pj)) =
Im(F (ij) ⊆ Mj . Finally, we also have a factorisation of F (gj+1) : F (Mj+1) →
F (Mj) as a composition of a surjective map F (pj+1) and an (injective) map F (ij).
It follows that Im(F (ij)) = Im(F (gj+1)) ⊆ Mj . Putting together all equalities of
submodules of Mj , we obtain that the sequence is exact at Mj .

5.2. Projective modules. A left R-module N is projective if the additive and
left exact functor HomR(N,−) : RMod → ZMod is in fact an exact functor (i.e. it
is also right exact).

Example 5.1. Let N =
⊕

i∈I R be a free left R-module. We want to check that

N is projective, i.e. the functor HomR(N,−) is exact. Let M ′
i→ M

p→ M ′′ be a
SES of left R-modules. Then the sequence

0 HomR(N,M ′) HomR(N,M) HomR(N,M ′′) 0
HomR(N,i) HomR(N,p)

is exact at HomR(N,M ′) and at HomR(N,M), and we want to prove that it is
also exact at HomR(N,M ′′), i.e. the map HomR(N, p) is surjective. This means
that for any R-linear map (f : N → M ′′) ∈ HomR(N,M ′′) we want to prove the
existence of an R-linear map (g : N → M) ∈ HomR(N,M) such that f = g ◦ p.
Recall that p is surjective: we can therefore choose elements mi ∈M , for all i ∈ I,
such that p(mi) = f(ιi(1)) ∈ M ′′. The universal property of direct sum allows us
to define an R-linear map g : N → M by declaring g(ιi(1)) = mi. And now: is it
true that this g does the job? Is it true that f = g ◦p? Let N ′ ⊆ N be the subset of
all n ∈ N for which (n)f = (n)g ◦ p; then N ′ is a sub-R-module of N and contains
the basis of elements ιi(1), so we must have N ′ = N .

For example, if R is a field F, then every F-vector space N is free (admits a basis),
and hence it is projective. This also follows from the fact that every SES is split
over a field, hence the additive functor HomF(N,−) sends SES (i.e. split SES) to
SES (i.e split SES).
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Example 5.2. Let R be a ring, F =
⊕

i∈I R be a free left R-module, and suppose
that N1 and N2 are submodules of F such that the inclusions ι1 : N1 → F and
ι2 : N2 → F exhibit F as isomorphic to the direct sum N1 ⊕N2. This can happen,
for instance, if we split I = I1 t I2 and set N1 =

⊕
i∈I1 R and N2 =

⊕
i∈I2 N2; but

we will see soon that more weird examples exist. We want to show that N1 (and
similarly N2) is projective.

Let M ′
i→M

p→M ′′ be a SES of left R-modules. As in Example 5.1, it suffices to
check that the sequence

0 HomR(N1,M
′) HomR(N1,M) HomR(N1,M

′′) 0
HomR(N1,i) HomR(N1,p)

is exact at HomR(N1,M
′′), i.e. that the map HomR(N1, p) is surjective. Let then

(f : N1 → M ′′) ∈ HomR(N1,M
′′) be an R-linear map. We can use the universal

property of F as direct sum N1⊕N2 to extend f to an R-linear map f ′ : F →M ′′:
we define f ′ by declaring its restriction on N1 to be f , and its restriction on N2

to be the zero map (or any other R-linear map N2 → M ′′ of your choice). Now
we use the argument from Example 5.1 to define a map g : F → M such that
f ′ = g ◦ p : F →M ′′. Finally, we restrict to N1 and obtain

f = ι1 ◦ f ′ = ι1 ◦ (g ◦ p) = (ι1 ◦ g) ◦ p = HomR(N1, p)(ι1 ◦ g) ∈ HomR(N1,M
′′).

This shows that HomR(N1, p) is surjective.

Both in Example 5.1 and 5.2 we have used left exactness of HomR(N,−) to quickly
reduce to a question about surjectivity of a map. Generalising this idea, we get the
following characterisation of a projective left R-module.

Lemma 5.3. Let N be a left R-module. Then N is projective if and only if for
every surjective map of left R-modules p : M → M ′′ and for every R-linear map
f : N →M ′′ there exists an R-linear map g : N →M such that f = g ◦ p.

Proof. If N is projective, then given p : M →M ′′ we can construct a SES ker(p)→
M

p→ M ′′. Applying the exact functor HomR(N,−), we in particular obtain that
the map HomR(N, p) = − ◦ p : HomR(N,M) → HomR(N,M ′′) is surjective, and
this is exactly the condition that for every f there is g with the required property.

Viceversa, if N satisfies the property involving f and g, then given a SES M ′
i→

M
p→M ′′ of left R-modules, we have in particular that p is surjective; therefore the

induced map HomR(N, p) : HomR(N,M) → HomR(N,M ′′) is surjective. We then
have that the sequence

0 HomR(N,M ′) HomR(N,M) HomR(N,M ′′) 0
HomR(N,i) HomR(N,p)

is exact: it is exact at HomR(N,M ′′) as we just saw, and it is exact at HomR(N,M ′)
and HomR(N,M) because HomR(N,−) is a left exact functor. �

Example 5.4. Let R = Z and let N = Z/2. Then the map Z [−]2→ Z/2 is surjective;
however the induced map HomZ(Z/2,Z)→ HomZ(Z/2,Z/2) is not surjective, since
it has the 0 abelian group as source and an abelian group isomorphic to Z/2 as
target. Therefore Z/2 is not projective, as it does not satisfy the characterisation
from Lemma 5.3.

The previous example is of course in contrast with what happens over a field: every
module is free, and hence projective.
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Example 5.5. Let R = Z/6, and consider Z/2 as an R-module: you can think of
Z/2 as being R/([2]6), i.e. the quotient of the ring by an ideal. Similarly, consider
Z/3 as an R-module. The chinese reminder theorem implies that the map

Z/6→ Z/2× Z/3, [n]6 7→ ([n]2, [n]3)

is bijective. Note that this map is also R-linear, and note that Z/2× Z/3 is equal
to the direct sum Z/2 ⊕ Z/3. It follows that both Z/2 and Z/3 are projective
R-modules.

The previous example shows that it is possible to have projective modules that
are not free: indeed the cardinality of a free Z/6-module is either a power of 6 or
infinite.

Example 5.6. Let F be a field and consider F[x]/(x) as a module over the following
rings:

• F[x]/(x) is free over F, hence it is projective;
• F[x]/(x) is not free over F[x]: for instance, because scalar multiplication by
x is injective on any free F[x]-module; try to prove that F[x]/(x) is not free
over F[x], or see in the following either Proposition 5.8 or Theorem 5.10;

• F[x]/(x) is projective but not free over F[x](x2 − x): use that a non-zero,
free F[x](x2 − x)-module admits elements that are not sent to 0 by the
scalar multiplication by [x]x2−x, and use the chinese reminder theorem to
show that F[x](x2 − x) ∼= F[x]/(x)⊕ F[x]/(x− 1) as F[x](x2 − x)-modules.

Here is a non-commutative example.

Example 5.7. Let R = Matk×k(F) be the ring of k × k matrices with coefficients
in a field F, and let M = Fk, considered as a left R-module. For each 1 ≤ i ≤ k
we can define Ri ⊂ R to be the sub-F-vector space of those matrices whose entries
outside the ith column vanish (whereas we allow any entries in F on the ith column).
Then the inclusions ιi : Ri → R exhibit R as the direct sum of F-vector spaces
R1⊕· · ·⊕Rk. In fact every Ri is a left R-submodule of R, so there is an isomorphism
of left R-modules

R ∼= R1 ⊕ · · · ⊕Rk;

moreover each Ri is isomorphic to M as a left R-module. It follows that M is a
projective left R-module.

All examples of projective R-modules M seen so far follow the pattern of Example
5.2, is this a chance? No!

Proposition 5.8. Let N be a left R-module. Then N is projective if and only if
N is isomorphic to a direct summand of a free left R-module.

Proof. Example 5.2 shows that a direct summand of a free module is projective.
Viceversa, let N be projective, and choose any R-linear surjective map p : F → N
from a (sufficiently big) free left R-module. Lemma 5.3 can be applied to f =
IdN : N → N : since p is surjective, there exists g : N → F such that f = g ◦ p. The

SES ker(p) → F
p→ N is thus split, because g is an example of a section of p. It

follows from Proposition 3.17 that F is isomorphic to the direct sum ker(p) ⊕ N ,
and thus both ker(p) and N are direct summands of a free module. �
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It is already the second time that we use an argument involving, for a given R-
module M , the existence of a surjective R-linear map F → M from a free module
F . In fact, this property of the category of left R-modules will be used very often:
more precisely, in many situations we will have an R-module M and we will have
to invoke the existence of a projective module N with a surjective R-linear map
N →M . The fact that N can be taken to be even free will be often irrelevant.

Notation 5.9. We will say that each of the categories RMod and ModR “has
enough projectives” to mean that every moduleM in either of the categories receives
a surjective R-linear map from some projective R-module.

Finally, we mention the following theorem about modules over a PID, leaving the
proof as an exercise (or see [Rot, Corollary 4.15]).

Theorem 5.10. If R is a PID, then every submodule of a free R-module is again
a free R-module.

In particular, putting together Proposition 5.8 and theorem 5.10, we obtain that
all projective R-modules over a PID R are in fact free modules.

Example 5.11. Q is not a projective Z-module, as it is not a free Z-module. To
see the latter, you can prove either of the following properties of Q, whose analogue
does not hold for a non-zero free Z-module:

• Q⊗Z Z/k = 0 for k ≥ 1 (use identification with Q/kQ);
• HomZ(Q,Z) = 0.

The last, general fact about projective modules is the following exercise.

Exercise 5.12. Let R be a ring and let (Mi)i∈I be a collection of projective left
R-modules. Then

⊕
i∈IMi is also a projective R-module.

5.3. Injective modules. A left R-module N is injective if the additive and left
exact functor HomR(−, N) : RModop → ZMod is in fact an exact functor (i.e. it
is also right exact). By Proposition 4.25, and since we know that HomR(−, N)
is left exact, we have the following characterisation of injective modules, which is
completely analogue to the one for projective modules from Lemma 5.3, and whose
proof is left as exercise.

Lemma 5.13. Let N be a left R-module. Then N is injective if and only if for
every injective map of left R-modules i : M ′ → M and for every R-linear map
f : M ′ → N there exists an R-linear map g : M → N such that f = i ◦ g.

Thinking of i as an inclusion, the characterisation says the following: any R-linear
map f defined on a sub-module M ′ ⊆ M and with values in an injective module
N can be extended to an R-linear map g defined on the entire M .
The following proposition, known as Baer’s criterion to recognise injective mod-
ules.14

Proposition 5.14 (Baer’s criterion). Let R be a ring and let N be a left R-module.
Then N is injective if and only if the following holds: for every left ideal I ⊂ R
and for every R-linear map of left R-modules f : I → N , there exists an R-linear
map of left R-modules g : R→ N extending f .

14We state and prove the proposition for left R-modules, but the same statement and the same
proof work also for right R-modules: just consider right ideals.
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Proof. If N is injective, then the mentioned property must hold, as it is a very
special case of the characterising property for injective R-modules from Lemma
5.13.
Viceversa, let N have the mentioned extension property with respect to all left
ideals of R, and consider a generic injective R-linear map i : M ′ →M and a generic
R-linear map f : M ′ → N . Without loss of generality, assume that M ′ ⊆ M is a
submodule and that i is the inclusion.
The first part of the proof is set-theoretical, and relies on the Zorn’s lemma: its
effect is to enlarge M ′ as much as possible among submodules of M on which
f can be extended. This part of the proof does not use any of the hypotheses
on N . Let F be the set of all couples (P, h) such that P ⊆ M is a left R-
submodule containing M ′, and h : P → N is an R-linear map extending f on M ′.
For example, (M ′, f) ∈ F , which is thus non-empty. We define a partial order on
F as follows: we set (P1, h1) � (P2, h2) if P1 ⊆ P2 and h2 : P2 → N is an extension
of h1 : P1 → N . For example, (M ′, f) is the minimum of �. We are however
interested in “large” extensions of f , so we look for �-big elements in F , possibly
maximal ones. Now, if G ⊂ F is a �-chain, then the union P̂ =

⋃
(P,h)∈G P , which

a priori is only a subset of M , is a sub-R-module of M , and there is a unique

function of sets ĥ : P̂ → N that, for each (P, h) ∈ G , restricts to h : P → N on P :

check that ĥ : P̂ → N is in fact an R-linear map. It follows that (P̂ , ĥ) is a �-upper
bound for the chain G ; in particular, every �-chain in F admits an upper bound.
Zorn’s lemma guarantees then that there exist at least one element (P̄ , h̄) which
is maximal with respect to �. Concretely, this means that for every submodule
P̄ ⊂ P ⊆M with P̄ 6= P , there exists no R-linear extension h : P → N of h̄. If this
happens because P̄ = M , then we are done, as h̄ : M → N is an extension of f as
required.
We suppose now by contradition that P̄ 6= M , fix m ∈ M \ P and declare
P = SpanR(P̄ ∪ {m}). Using the hypotheses on N , we will construct an R-linear
extension h : P → N of h̄, contradicting maximality of (P̄ , h̄) in F .
Define an R-linear map π : P̄ ⊕ R → P by setting π|P̄ ≡ i and π(r) = r · m for
r ∈ R. The map π is surjective, since it hits generators of P ; its kernel consists of
those couples (p̄, r) such that p̄+r ·m = 0 ∈M . We thus have P ∼= (P̄ ⊕R)/ ker(π),
and thus in order to define an R-linear map h : P → N it suffices to define an R-
linear map h̃ : P̄ ⊕ R → N with the property that h̃|ker(π) ≡ 0; moreover we want

h̃|P̄ = h̄ : P̄ → N , so that the induced map h : P → N is an extension of h̄.

Thus we are only left with choosing h̃|R. Let I ⊂ R be the left ideal of elements
r ∈ R such that r ·m ∈ P̄ ; then every element (−r ·m, r), for r ∈ I, should belong

to ker(h̃); it follows that h̃|R must send r 7→ h̄(−r ·m) whenever r ∈ I. Otherwise,

there are no other constraints in choosing h̃|R : R→ N .
Now we finally use the hypotheses on N : the map f : I → N given by f(r) =

h̄(−r ·m) can be extended R-linearly to a map g : R→ N , and we set h̃|R = g. �

Baer’s criterion is unfortunately difficult to apply in general, but at least there are
two easy applications.

Example 5.15. Let F be a field. Then there are two ideals in F, namely 0 and
F itself. Every F-linear map defined on 0 is the zero map, which can be extended
(e.g. by the zero map!) on F; every map defined on F is already defined on the
entire F. Conclusion: every F-vector space is injective.
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Example 5.16. Let R be a PID. Then Baer criterion for injectivity of an R-module
becomes the following: and R-module N is injective if and only if for all a 6= 0 in
R and for all n ∈ N there exists an element n′ ∈ N such that a · n′ = n. Such an
R-module is also called a divisible R-module.
For example, Q is a divisible Z-module, and every quotient of Q is also divisible
and hence Z-injective, as Z is a PID. The most famous quotient of Q as a Z-module
is probably Q/Z, which has the remarkable property of being a divisible Z-module
in which every element is a torsion element (see later Definition 5.22).

The last, general fact about injective modules is the following exercise, which par-
allels Exercise 5.12.

Exercise 5.17. Let R be a ring and let (Mi)i∈I be a collection of injective left
R-modules. Then

∏
i∈IMi is also an injective R-module.

Finally, we introduce a terminology which is parallel with that of Notation 5.9.

Notation 5.18. We will say that each of the categories RMod and ModR “has
enough injectives” to mean that every module M in either of the categories is the
source of an injective R-linear map to some injective R-module.

We will prove in the next lecture that the previous terminology is not void!

5.4. Flat modules. A left R-module N is flat if the additive and right exact
functor − ⊗R N : ModR → ZMod is in fact an exact functor (i.e. it is also left
exact). Note that to define “flat” we must use simultaneously both notions of left
and right R-modules. By Proposition 4.25, and since we know that −⊗RN is right
exact, we have the following characterisation of flat modules, which is completely
analogue to the one for projective modules from Lemma 5.3, and whose proof is
left as exercise.

Lemma 5.19. A left R-module N is flat if and only if the following holds: whenever
i : M ′ → M is an injective R-linear map between right R-modules, then the map
i⊗R Idn : M ′ ⊗R N →M ⊗R N is also injective.

Example 5.20. Let F =
⊕

i∈I R be a free left R-module; then F is flat. To see
this, let f : M ′ → M be an injective map of right R-modules. Consider F as an
R−R-bimodule, leveraging on the fact that each copy of R is an R−R-bimodule.
Then there is a diagram of right R-modules⊕

i∈IM
′ ⊕

i∈IM

M ′ ⊗R F M ⊗R F.

⊕
i∈I f

∼= ∼=
f⊗RIdF

The map
⊕

i∈I f is defined by sending ιi(m) 7→ ιi(f(m)) for all i ∈ I and m ∈M ;
check that it is an injective map. The vertical isomorphisms follow from Proposition
3.5. Hence also f ⊗R IdF is injective.
Now let N be a projective left R-module, and let N ′ be a projective left R-module
such that F = N ⊕N ′ is a free module. We claim that N is flat (and similarly N ′
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is flat). Let f : M ′ →M as above; then we have a commutative diagram

M ′ ⊗R N M ⊗R N

M ′ ⊗R F M ⊗R F.

f⊗RIdN

IdM′⊗R ιN IdM⊗R ιN

f⊗RIdF

The vertical maps are injective by Proposition 3.5, and the bottom horizontal map
is injective as argued above; it follows that also the top horizontal map is injective.

Using the previous example, we can give the following terminology, which is however
non-standard, and in fact is not going to be a very useful one.

Notation 5.21. We will say that each of the categories RMod and ModR “has
enough flat modules” to mean that every module M in either of the categories
receives a surjective R-linear map from some flat R-module.

Definition 5.22. Let R be a (commutative) domain and let M be an R-module.
An element m ∈M is a torsion element if there is a ∈ Z such that a ·m = 0 ∈M .
We denote by tors(M) ⊂M the subset of torsion elements

For example, 0 is always a torsion element. Check that tors(M) is a sub-R-module
of M (here the hypothesis that R is a domain is essential).

Example 5.23. Let R be a domain and let M be an R-module. Assume that
tors(M) 6= 0. Then M is not flat. Indeed, let m 6= 0 ∈ tors(M), and let a 6= 0 ∈ R
such that a·m = 0. Let (a) ⊂ R be the principal ideal generated by a. Then the map

R
a·−→ R is an injective map of R-modules, yet the map (a · −)⊗R IdM : R⊗RM →

R⊗RM can be identified with the map a · − : M →M , which is not injective.

Example 5.24. Let R = F[x, y] for some field F, and consider M = (x, y) ⊂ R.
Note that M is torsion-free, as R is a domain. Yet, we claim that M is not flat. To
see this, consider the inclusion i : (x, y) → R; tensoring over R with M we obtain
the map i⊗R IdM : M ⊗RM →M ⊗R R. The element x⊗ y− y⊗ x ∈M ⊗RM is
sent to 0 in M ⊗R R, as in this second tensor product we can compute

x⊗ y − y ⊗ x = x⊗ y · 1− y ⊗ x · 1 = xy ⊗ 1− yx⊗ 1 = 0.

However this computation does not make sense in M⊗RM , since 1 is not an element
of M . In fact we can prove that x⊗ y − y ⊗ x 6= 0 ∈M ⊗RM .
To see this, consider the quotientR-modulesM1 = (x, y)/(y, x2) andM2 = (x, y)/(x, y2).
The surjective R-linear maps p1 : M →M1 and p2 : M →M2 give rise to a surjec-
tive map of R-modules

p1 ⊗R p2 : M ⊗RM →M1 ⊗RM2.

The element x⊗ y − y ⊗ x ∈M ⊗RM is sent to the element [x]⊗ [y], as the other
summand −[y]⊗[x] vanishes in M1⊗RM2. We claim that [x]⊗[y] 6= 0 ∈M1⊗RM2.
Note that both M1 and M2 are isomorphic to R/(x, y); more precisely, there is an R-
linear isomorphism R/(x, y)→M1 sending [1] 7→ [x] and an R-linear isomorphism
R/(x, y) → M2 sending [1] 7→ [y]. There is therefore an R-linear isomorphism
M1 ⊗R M2 → R/(x, y) ⊗R R/(x, y) under which the element [x] ⊗ [y] corresponds
to [1] ⊗ [1]; and now remember that R/(x, y) ⊗R R/(x, y) ∼= R/(x, y), with an
isomorphism sending [1]⊗ [1] to [1] 6= [0] ∈ R/(x, y).



HOMALG 2021 45

The fact that in the previous example R was not a PID was crucial, as we see in
the following.

Proposition 5.25. Let R be a ring and let N be a left R-module with the following
property: every finitely generated sub-R-module N ′ ⊂ N is flat. Then N is flat.

Proof. Let i : M ′ →M be an injective homomorphism of right R-modules. Suppose
by absurd that i⊗RIdN : M ′⊗RN →M⊗RN is not an injective Z-linear map. Then

there is an element x =
∑k
j=1m

′
j ⊗ nj 6= 0 ∈ M ′ ⊗R N such that (i⊗R IdN )(x) =∑k

j=1 i(m
′
j)⊗ nj = 0 ∈M ⊗R N .

Recall that M ⊗R N = AM,N/BM,N , where AM,N =
⊕

(m,n)∈M×N Z and BM,N is

the sub-abelian group generated by the elements from Definition 2.16. We get that

y =
∑k
i=1(i(mj), nj) ∈ BM,N ⊆ AM,N , and thus we can express y as a Z-linear

combination of generators of B:

y =

a∑
j=1

αj ·
[
(m1

j,1 +m1
j,2, n

1
j )− (m1

j,1, n
1
j )− (m1

j,2, n
1
j )
]

+

b∑
j=1

βj ·
[
(m2

j , n
2
j,1 + n2

j,2)− (m2
j , n

2
j,1)− (m2

j , n
2
j,2)
]

+

c∑
j=1

γj ·
[
(m3

j · rj , n3
j )− (m3

j , r · n3
j )
]
.

Here each letter m, n and n represents an element in M , N or R; the exponents
1,2 ,3 are just to distinguish three different families of elements, of sizes a, b, c ≥ 0;
and αj , βj and γj are coefficients in Z. Let now

N ′ = SpanR

(
{nj}kj=1 ∪

{
n1
j

}a
j=1
∪
{
n2
j,1, n

2
j,2

}b
j=1
∪
{
n3
j

}c
j=1

)
⊆ N.

Then N ′ is a finitely generated R-submodule of N , and denote by ι : N ′ → N the

inclusion. We can consider the element x′ =
∑k
i=1m

′
j⊗nj ∈M ′⊗RN ′, given by the

same formula used for x; since the map of abelian groups IdM ′⊗Rι sends x′ to x 6= 0,
we have x′ 6= 0 ∈M ′⊗RN ′. Consider now the map i⊗RIdN ′ : M

′⊗RN ′ →M⊗RN ′;
then (i⊗R)(x′) =

∑k
i=1 i(m

′
j) ⊗ nj vanishes in M ⊗R N ′, as witnessed by the fact

that y′ =
∑k
i=1(i(mj), nj) ∈ AM,N ′ can be written as

y′ =

a∑
j=1

αj ·
[
(m1

j,1 +m1
j,2, n

1
j )− (m1

j,1, n
1
j )− (m1

j,2, n
1
j )
]

+

b∑
j=1

βj ·
[
(m2

j , n
2
j,1 + n2

j,2)− (m2
j , n

2
j,1)− (m2

j , n
2
j,2)
]

+

c∑
j=1

γj ·
[
(m3

j · rj , n3
j )− (m3

j , r · n3
j )
]
.

and is thus an element in BM,N ′ ⊂ AM,N ′ . This shows that the finitely generated
sub-R-module N ′ of N is not flat, which contraditcts the hypothesis on N . �

The idea in the previous proof is more or less the following: to show that a map is
not injective, one only needs to describe an element that vanishes, and this requires
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finitely many generators in the source. To witness the vanishing of the image of
the chosen element, one needs finitely many of the relations holding in the target.
In few words, one needs a finite amount of information to witness that an R-linear
map is not injective.
We apply the previous proposition to the case of a PID.

Corollary 5.26. Let R be a PID and let N be an R-module with tors(N) = 0 (we
say, N is torsion-free). Then N is flat.

Proof. Let’s check that every finitely generated sub-R-module N ′ of N is flat.
Surely, N ′ is torsion-free; a finitely generated module over a PID is a direct sum of
cyclic modules, and since N ′ torsion-free, then all cyclic summands of N ′ must be
of the form R. This means that N ′ is a finitely generated free R-module, and in
particular it is flat. �

Example 5.27. Q is flat over Z.

6. Enough injectives

6.1. The category RMod has enough injectives. We already saw that RMod
has enough projectives: every left R-module receives a surjective R-linear map
from a projective (in fact, from a free) R-module. We want now to prove a “dual”
statement. We begin with the simplest ring R, namely Z.

Lemma 6.1. Every Z-module M injects into some injective Z-module N .

Proof. Recall that a Z-module is injective if and only if it is divisible, as Z is a PID.
In particular Q/Z is an injective Z-module. For every element m 6= 0 ∈M we can
construct a Z-linear map fm : M → Q/Z as follows:

• first, we choose a non-zero Z-linear map f ′m : SpanZ(m) → Q/Z: this is
possible, since SpanZ(m) is either isomorphic to Z (in which case we map m
to any non-zero element of Q/Z, and extend Z-linearly), or it is isomorphic
to Z/k for some k ≥ 1 (in which case we map m to any non-zero element
of order k in Q/Z, and extend Z-linearly);15

• second, we use that Q/Z is injective to extend f ′m to a Z-linear map
fm : M → Q/Z.

The map fm is guaranteed to map m ∈ M to something non-zero in Q/Z, but it
could be non-injective. However, if we consider all maps fm at the same time, we
obtain an injective Z-linear map into the product (using the universal property of
the product, btw)

f =
∏

m∈M\{0}

fm : M →
∏

m∈M\{0}

Q/Z.

And now we remember from Exercise 5.17 that a product of injective modules is
injective. �

That was great, but after all Z is a very special ring, namely a PID. Over a generic
non-commutative ring what can we do? Actually, are we even sure that over a
generic, possibly non-commutative ring R there exist injective left R-modules at
all, apart from the zero module?

15We use Q/Z rather than a conceptually simpler injective Z-module as, for example, Q,
precisely because Q/Z has torsion elements of all orders.
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Lemma 6.2. Let R be a ring, and consider R as a Z − R-bimodule. If A is an
injective (left) Z-module, then HomZ(R,A) is an injective left R-module.

Proof. Let i : M ′ → M be an injective map of left R-modules. We want to prove
that the induced map of abelian groups

HomR(i,HomZ(R,A)) = i◦− : HomR(M,HomZ(R,A))→ HomR(M ′,HomZ(R,A))

is surjective. We can now use the Hom-tensor adjunction, and replace the above
map by another, equivalent map of abelian groups

HomZ(R⊗R i, A) = (IdR ⊗R i) ◦ − : HomZ(R⊗RM,A)→ HomZ(R⊗RM ′, A)

And now we can compute easily tensor products over R with R, and simplify the
above further as follows, where i is now treated only as a Z-linear map

HomZ(i, A) = i ◦ − : HomZ(M,A)→ HomZ(M ′, A).

A magic has occurred: the ring R has disappeared from the formula! Now we just
use that A is an injective Z-module, and that i : M ′ → M is an injective Z-linear
map. �

Using Lemma 6.2 we can now repeat the strategy of Lemma 6.1. Given a left R-
module M , for each m ∈M we first define a Z-linear map fm : M → Q/Z with the
property that fm(m) 6= 0; we then first interpret fm as a Z-linear map

fm : R⊗RM → Q/Z
and then use the Hom-tensor adjunction to transform fm into an R-linear map

gm : M → HomZ(R,Q/bZ).

The property that fm(m) 6= 0 is transformed into the property that gm(m) sends
1 ∈ R to a non-zero element in Q/Z; in particular gm(m) 6= 0 ∈ HomZ(R,Q/Z).
And now we take the big product:∏

m∈M\{0}

gm : M →
∏

m∈M\{0}

HomZ(R,Q/Z)

is an injective, R-linear map with target an injective left R-module.

7. Localisations and abelian categories

7.1. Localisation of (commutative) rings. In this subsection we let R be a
commutative ring. The zero ring R = {0} is allowed: it is the unique ring in which
0 = 1, and it is commutative; all arguments will not need the hypothesis 0 6= 1,
and it will actually happen to encounter the zero ring often, when dealing with
localisations.
The basic idea behind the notion of localisation is that given a ring R and a set
S ⊂ R of admissible “denominators”, we can construct a new ring S−1R containing
fractions of elements of R with an element of S as denominator. This should
generalise the construction of Q as ring of fractions of elements of Z, with an
element of Z \ {0} as denominator.

Definition 7.1. An element r ∈ R is invertible if there exists an element r′ ∈ R
such that rr′ = 1.16The subset of invertible elements of R is denoted R× ⊆ R.

16We are in the commutative setting, so also the other equality r′r = 1 is immediately satisfied.
In the non-commutative setting one has to impose both equalities!
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For example, if F is a field, then F× = F \ {0}; instead Z× = {±1}; in the zero ring
the unique element is 0 = 1, which is invertible (with itself as inverse). We note
the following:

• R× is an abelian group17, with 1 ∈ R as neutral element and with multi-
plication in R as composition;
• Every map f : R → S of commutative rings sends invertible elements to

invertible elements, and thus restricts to a map of abelian group f× : R× →
S×. Moreover, the subset f−1(S×) ⊆ R is closed under multiplication.

Definition 7.2. Let R be a commutative ring and S ⊆ R be a subset. A ho-
momorphism of commutative rings f : R → S is S-local if f(S) is contained in
S×.
A localisation of R at S is a couple (S̄, f̄) of a commutative ring S̄ and an S-local
homomorphism of rings f̄ : R → S̄, satisfying the following universal property:
whenever (S, f) is a couple of a commutative ring S and a S-local homomorphism
of rings f : R → S, there exists a unique homomorphism of rings θ : S̄ → S such
that the following diagram of commutative rings commutes

R S̄

S.

f̄

f
θ

As usual, when defining something by universal property, we can easily check that
if R admits a localisation at S, then this couple (S̄, f̄) is unique up to canonical
isomorphism. But does a localisation exist? Before attempting to construct a
localisation, we note the following.
If S ⊆ R is a subset, we can define S̄ to be the “multiplicative and invertible
closure” of S, i.e. the smallest subset of R containing S ∪ R× and closed under
multiplication. Then it is easy to check that a homomorphism of rings f : R → S
is S-local if and only if it is also S̄-local. As a consequence, if a localisation of R
at S exists, then it will have also the universal property for being a localisation of
R at S̄; and viceversa, any localisation of R at S̄ is also a localisation of R at S.

Definition 7.3. Let R be a commutative ring and let S ⊂ R be a subset containing
R× and closed under multiplication. We define S−1R as the set of equivalence
classes of couples (r, s) ∈ R × S: two couples (r, s) and (r′, s′) are equivalent if
there exists t ∈ S such that trs′ = tr′s. Check that this is indeed an equivalence
relation! The equivalence class of (r, s) is usually denoted as a fraction r

s .

We define a sum on the set S−1R by setting r
s + r′

s′ = rs′+r′s
ss′ ; the neutral element

of the sum is 0
1 , and the additive inverse of r

s is −rs .

We define a product on the set S−1R by setting r
s ·

r′

s′ = rr′

ss′ ; the neutral ele-

ment of the product is 1
1 . The set S−1R becomes thus a commutative ring (check

associativity, distributivity, well-definition of the operations...).
Moreover, we have a map of rings ηS,R : R→ S−1R given by r 7→ r

1 .

We can now check that (S−1R, ηS,R) has the universal property for being a locali-
sation of R at S. Let f : R→ S be a homomorphism of commutative rings sending

17If R is non-commutative, we get nevertheless that R× is a (possibly non-abelian) group.



HOMALG 2021 49

S to S×. Then the map θ : S−1R → S, if it exists, must send r
1 = ηS,R(r) to the

element f(r) ∈ S, for all r ∈ R. Moreover, for all s ∈ S, we must have

f(s) · θ
(

1

s

)
= θ

(s
1

)
· θ
(

1

s

)
= θ

(
s

1
· 1

s

)
= θ

(s
s

)
= θ

(
1

1

)
= 1,

using the easy-to-check equality s
s = 1

1 in S−1R. This means that θ must send 1
s to

the multiplicative inverse of f(s) in S, which fortunately, by the hypothesis on f ,
exists. Last, for every r

s ∈ S
−1R we can now write the constraint θ( rs ) = f(r) ·θ( 1

s ),
and therefore there are two possibilities:

• either the above constraints are compatible with each other, and give rise
to a map of sets θ : S−1R → S which happens to be a homomorphism of
rings: in this case θ exists and is unique;
• or something goes wrong: in this case the required homomorphism of rings
θ : S−1R→ S does not exist.

Check that indeed everything goes fine.

Notation 7.4. If S ⊂ R is any subset, one defines S−1R as S̄−1R, where S̄ is the
“multiplicative and invertible closure” of S in the sense above.

In fact, one can take even a larger “closure” of S without changing the universal
property of localisation.

Definition 7.5. Let r, r′ ∈ R be two elements. We say that r′ is a divisor of r if
there exists r′′ ∈ R with r′r′′ = r. Note that a divisor of an element in R× is again
in R×.
Given a subset S ⊂ R, we define the “multiplicative and divisible closure” Ŝ ⊂ R
as the smallest subset of R which contains S ∪ R×, is closed under multiplication,
and contains any divisor of any of its elements.

We remark that a localisation of R at S and a localisation of R at Ŝ have equivalent
universal properties, and thus are isomorphic rings. In few words: if we change R
by allowing denominators in S, then there is no harm in allowing denominators
equal to products of elements of S, or divisors of elements of S, or a combination
of the two.

Example 7.6. Let S = Z \ {0} ⊂ Z; then S−1Z is precisely the ring Q, as defined
in elementary school.
Let S = {2} ⊂ Z; then S−1Z is the subring of Q containing all fractions whose
denominator has the form ±2k, for some k ≥ 0. The same description holds for the
ring {4}−1 Z.
In general, if S ⊆ Z \ {0}, then S−1Z is the subring of Q containing all reduced
fractions a

b such that each prime factor of b is a divisor of some element of S.

Example 7.7. More generally, if R is a domain, one can define the fraction field
Frac(R) as the localisation (R \ {0})−1R.

Example 7.8. If S ⊆ R× ⊂ R, then the couple (R, IdR) has the universal property
for being a localisation of R at S. It follows that S−1R is canonically isomorphic
to R; the canonical isomorphism is the map ηS,R : R→ S−1R.

The above examples suggests that S−1R is a larger ring than R, in particular the
map ηS,R : R→ S−1R is injective. This is however false in general!
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Example 7.9. Let S = R ⊆ R. Then every fraction r
s ∈ S

−1R is equal to zero:

to check that r
s = 0

1 , we need to find t ∈ S such that t · r · 1 = t · 0 · s, and we may

take t = 0. This means that R−1R is the zero ring; the map ηR,R : R→ R−1R will
be surjective, but not injective (unless R itself is the zero ring).

Example 7.10. Let now R = Z/6 and let S = {[2]6}. The map of rings f̄ : Z/6→
Z/3 sending [n]6 7→ [n]3 has the property of sending [2]6 to the element [2]3, which
is invertible in Z/3. Let us check that (Z/3, f̄) has the universal property to be a
localisation of Z/6 at [2]6.
Let f : Z/6 → S be a homomorphism of commutative rings, sending [2]6 to an
invertible element in S. Since [1]6 7→ 1S ∈ S, we must have that 2S : = 1S + 1S is
invertible. Moreover 6S = f([6]6) = f([0]6) = 0S . Finally, note that 2S · 3S = 6S ,
hence this product vanishes. Multiplying by (2S)−1, i.e. the multiplicative inverse
of 2S in S, we obtain that 3S = 0S , which implies that f([3]6) = 0. This means that
f factors through the quotient Z/3 ∼= (Z/6)/([3]6) of Z/6 by the ideal generated by
[3]6, and this is precisely saying that f factors (uniquely) through f̄ .
Again we note that η{[2]6},Z/6 : Z/6→ Z/3 is not injective.

Let R be a commutative ring and let S be any subset of R. Then S−1R can be
considered as an R-module, using the map of rings ηS,R : R→ S−1R. We now have
the following remarkable fact.

Proposition 7.11. The R-module S−1R is flat.

Assuming the proposition, we observe that S−1R can be also considered as a S−1R−
R-bimodule; this implies that S−1R⊗R− can be considered as a functor RMod→
S−1RMod, and the proposition says that this functor is exact18.

Example 7.12. Q is a flat and injective Z-module, but it is not a projective Z-
module (see Example 5.11).

Example 7.13. Let Q(x) be the field of fractions of polynomials in Z[x]; then
Q(x) is a flat Z[x]-module. Clearly, Q(x) is also isomorphic to the field of fractions
of the domain Q[x], so it is also flat over Q[x].

Exercise 7.14. Let a ≥ 1 be an integer. Prove that Z/2 is

• not at all a Z/a-module, if a is odd;
• a projective, hence flat Z/a-module, if a is even but a/2 is odd;
• a non-flat, hence non-projective Z/a-module, if a is divisible by 4.

Generalise the above by replacing 2 with pk, for some p prime and k ≥ 1.

7.2. Localisation of modules. To prove Proposition 7.11, it is convenient to do
the following three steps:

• define a new functor S−1− : RMod→ RMod;
• prove that the functor S−1− is exact;
• prove that the functor S−1− is naturally isomorphic to the functor S−1R⊗R
− : RMod→ RMod.

18Actually, the proposition says that the composition of the functor S−1R ⊗R − : RMod →
S−1RMod with the functor f̄∗ : S−1RMod → RMod is exact: but checking one statement is
equivalent to checking the other, as anyway any functor towards a category of modules if exact if

and only if its composition with the forgetful functor all the way to ZMod is exact.
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Definition 7.15. Let R be a commutative ring and S ⊂ R. An R-module M is
S-local if for all r ∈ S the map r · − : M →M is bijective.

Note that if M is S-local, then it is automatically also Ŝ-local:

• any element of R× acts bijectively on M , just because M is an R-module;
• if r, r′ ∈ R act bijectively on M , then so does rr′;
• using that R is commutative, if r acts bijectively on M and r = r′r′′ = r′′r′,

then both r′ · − and r′′ · − must be self-bijections of M .

Example 7.16. Let M be an S−1R-module, and consider M as an R-module by
restriction of scalars along the map of rings R → S−1R. Then M is a S-local
R-module: indeed for every element r ∈ S the map r · − : M → M coincides with
the map r

1 · − : M →M , which has as inverse the (forgotten) map 1
r · − : M →M .

In fact the converse also holds: ifM is a S-localR-module, it is because it is obtained
from a S−1R-module by restriction of scalars. Concretely, for a fraction r

s ∈ S
−1R

we can define the action r
s · − : M →M as the composition of r · − : M →M and

the inverse of the bijection s · − : M →M :

r
s · − : M M M.

r·− (s·−)−1

Check that two equivalent fractions induce the same map M → M ; check that
these maps assemble into an action of S−1R on M , so that the abelian group M
becomes an S−1R-module, and so that the old R-module structure can be retrieved
using the restriction of scalars.

The previous example shows that the information of a S-local R-module is equiva-
lent to the information of a S−1R-module. To make this precise, you can solve the
following exercise.

Exercise 7.17. The restriction of scalars functor is a functor S−1RMod → RMod
with the following properties:

• it is fully faithful (this means that a map of sets between S−1R-modules is
an R-linear map if and only if it is also an S−1R-linear map);
• its essential image is the full subcategory of RMod spanned by S-local R-

modules (this means that precisely the S-local modules can be obtained,
up to isomorphism, through the functor).

Definition 7.18. Let M be an R-module. A localisation of M at S is a cou-
ple (N̄ , f̄) consisting of a S-local R-module N̄ and an R-linear map f̄ : M → N̄
satisfying the following universal property: whenever (N, f) is a couple of a S-
local R-module and an R-linear map f : M → N , there exists a unique R-linear
map θ : N̄ → N such that the following diagram of R-modules and R-linear maps
commutes:

M N̄

N.

f̄

f
θ

Uniqueness up to canonical isomorphism of a localisation of M at S can be proved
in the usual way. The existence is given by the following definition, which is very
similar to Definition 7.3
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Definition 7.19. Let R be a commutative ring, S ⊂ R be a subset containing R×

and closed under multiplication, and let M be an R-module. We define S−1M as
the set of equivalence classes of couples (m, s) ∈ M × S: two couples (m, s) and
(m′, s′) are equivalent if there exists t ∈ S such that tms′ = tm′s. Check that this
is indeed an equivalence relation! The equivalence class of (m, s) is usually denoted
as a fraction m

s .

We define a sum on the set S−1M by setting m
s + m′

s′ = s′·m+s·m′
ss′ ; the neutral

element of the sum is 0
1 , and the additive inverse of m

s is −ms .

We define an action of S−1R by scalar multiplication on S−1M by setting r
s ·

m
s′ =

r·m
ss′ . The set S−1M becomes thus a S−1R-module, and hence by Example 7.16 it
can be also considered as a S-local R-module (check that everything goes fine with
the above definition of S−1R-module structure on S−1M).
Moreover, we have a map of R-modules ηS,M : M → S−1M given by m 7→ m

1 .

You can now adapt the proof of the fact that S−1R is a localisation of R at S as
rings, and prove that (S−1M,ηS,M ) is a localisation of M at S as R-modules.

Notation 7.20. If S ⊂ R is any subset, we define S−1M as S̄−1M , where S̄ is the
“multiplicative and invertible closure” of S.

We can now explore the functoriality of the construction transforming an R-module
M into a S−1R-module S−1M . Let g : M → N be an R-linear map. Then the

composition M
g→ N

ηS,N→ S−1N is an R-linear map M → S−1N with source M
and target a S-local R-module: the universal property of M ensures that there
exists a unique R-linear map θ : S−1M → S−1N such that the following diagram
commutes

M N

S−1M S−1N.

g

ηS,M ηS,N

θ

The map θ is usually denoted S−1g; concretely, it sends m
s 7→

g(m)
s . This construc-

tion gives rise to a functor S−1− : RMod → S−1RMod, sending M 7→ S−1M and
(g : M → N) 7→ (S−1g : S−1M → S−1N).

Lemma 7.21. Let R be a commutative ring and S ⊂ R. Consider S−1R as a
S−1R−R-bimodule, and regard S−1R⊗R− as a functor RMod→ S−1RMod. Then
there is a natural equivalence of functors (S−1−) ∼= (S−1R⊗R −).

Proof. Let M be an R-module. We can define an R-bilinear map S−1R ×M →
S−1M by sending ( rs ,m) 7→ r·m

s ; this gives rise to an R-linear map εM : S−1R ⊗R
M → S−1M . This map has the property of sending r

s ⊗m 7→
r·m
s .

Viceversa, we can define an R-linear map M → S−1R⊗RM as the composition

M R⊗M S−1R⊗M ;
∼= ηS,R⊗RIdM

Since the target R-module is S-local, the universal property of S−1M gives rise to
an R-linear map ε′M : S−1M → S−1R⊗RM . This map has the property of sending
m
s 7→

1
s ⊗R m.

The maps εM and ε′M are inverse of each other, as can be checked on generators.
To conclude the proof, one needs to check that:
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• the collection of all maps εM , for M ∈ RMod, assemble into a natural
transformation ε :

(
S−1R⊗R −

)
⇒
(
S−1−

)
;

• the collection of all maps ε′M , for M ∈ RMod, assemble into a natural
transformation ε′ :

(
S−1−

)
⇒
(
S−1R⊗R −

)
.

This last check is left as exercise. �

The last step to prove Proposition 7.11 is the following Lemma.

Lemma 7.22. Let R be a commutative ring, and let S ⊂ R be a subset. Then the
functor S−1− : RMod→ RMod is exact.

Proof. Without loss of generality assume that S contains R× and is closed under
multiplication. By Lemma 7.21 we know that S−1− can be identified with a right
exact functor, namely S−1R⊗R−. So we do not really need to check whether S−1−
is enriched over abelian groups, is additive, is right exact. All we have to check is the
following: if i : M ′ →M is an injective R-linear map, then S−1i : S−1M ′ → S−1M
is injective as well.

Let m′

s ∈ S
−1M ′ and assume that i(m′)

s = 0
1 ∈ S

−1M . Then there exists a t ∈ S
such that t·i(m′) = ts·0 = 0. The injectivity of i implies the equality t·m′ = 0 ∈M ′,
and this witnesses that m′

s = 0 ∈ S−1M ′. �

7.3. A glimpse into abelian categories.

Definition 7.23. Let C be a category enriched in Z-modules, and let f : x → x′

be a morphism. A kernel for f is an equaliser of the diagram

x x′
f

0

i.e. it is a couple (ȳ, ī) with ȳ ∈ C and ī : ȳ → x, such that 0◦ ī = f ◦ ī (of course, the
first composition is also 0 ∈ HomC(ȳ, x

′), and such that whenever (y, i) is another
couple with i : y → x satisfying 0 ◦ i = f ◦ i, then there is a unique θ : y → ȳ such
that i = ī ◦ θ.

Check that Definition 7.23 is equivalent to requiring that

(ȳ ; ī : ȳ → x, f ◦ ī : ȳ → x′)

is a limit in C of the diagram from Definition 7.23. Check that in RMod the
categorical kernel of an R-linear map f : M → N exists and a model for it is given
by the classical notion of kernel ker(f), together with the inclusion i : ker(f) ⊂M .

Notation 7.24. In a generic category C, a morphism f : x → x′ is called a
monomorphism if the following holds: whenever g, g′ : y → x are distinct mor-
phisms from some object y to x, then g ◦ f 6= g′ ◦ f ∈ HomC(y, x

′).
If C is a Z-linear category admitting a zero object 0 (e.g., an additive category), a
morphism f : x→ x′ is a monomorphism if and only if the zero object satisfies the
universal property for being a categorical kernel of f .

In RMod, a monomorphism is an injective R-linear map.

Definition 7.25. Let C be a category enriched in Z-modules, and let f : x → x′

be a morphism. A cokernel for f is a coequaliser of the diagram

x x′
f

0
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i.e. it is a couple (z̄, p̄) with z̄ ∈ C and p̄ : x′ → z̄, such that p̄ ◦ 0 = p̄ ◦ f (of
course, the first composition is also 0 ∈ HomC(x, z̄), and such that whenever (z, p)
is another couple with p : x′ → z satisfying p ◦ 0 = p ◦ f , then there is a unique
θ : z̄ → z such that p = θ ◦ p̄.
Again, a categorical cokernel can be equivalently defined as a colimit of the diagram
from Definition 7.25. In RMod a model for the categorical cokernel is given by the
classical cokernel coker(f), together with the projection to the quotient p : N →
coker(f), using the notation above.

Notation 7.26. In a generic category C, a morphism f : x → x′ is called an
epimorphism if the following holds: whenever g, g′ : x′ → y are distinct morphisms
from x′ to some object y, then f ◦ g 6= f ◦ g′ ∈ HomC(x, y).
If C is a Z-linear category admitting a zero object 0 (e.g., an additive category), a
morphism f : x → x′ is an epimorphism if and only if the zero object satisfies the
universal property for being a categorical cokernel of f .

In RMod, an epimorphism is a surjective R-linear map.

Example 7.27. Let ZModfree be the subcategory of ZMod containing all free
abelian groups and all Z-linear maps between them. It is a Z-linear category and
it is also additive, as finite products of free abelian groups are again free abelian
groups.
For a homomorphism f : A → B of free abelian groups, the classical ker(f) is a
subgroup of a free abelian group, which is again a free abelian group19 Check that
ker(f), with its inclusion in A, is a categorical kernel for f in the category ZModfree

(Hint: if ker(f) has the universal property to be a categorical kernel in the larger
category ZMod, then it also has the universal property in the smaller category

ZModfree, in which it also lies.
We sketch now an argument showing that not every map in ZModfree admits a
cokernel. We start from the following black-boxed fact about the Z-module

∏
i∈N Z:

HomZ

(∏
i∈N

Z;Z

)
∼=
⊕
j∈N

Z,

where the isomorphism is given explicitly as the map from
⊕

j∈N Z to HomZ(
∏
i∈N Z;Z)

sending the basis element ιj(1) to the projection on the jth coordinate πj : (ni)i∈N 7→
nj . In particular, note that

∏
i∈N Z is not a free abelian groups: if it were, it would

have a more-than-countable basis (indeed, the infinite product is a more-than-
countable set), but then HomZ

(∏
i∈N Z;Z

)
would also be a more-than-countable

set, whereas by the black-boxed fact HomZ
(∏

i∈N Z;Z
)

is a countable group.
Now let g1 : F1 → F0 be a presentation of the Z-module

∏
i∈N Z, i.e. coker(g1) ∼=∏

i∈N Z, where F1 and F0 are free abelian groups (likely of more-than-countable

size). We claim that g1 admits no categorical cokernel in ZModfree. Suppose
instead that there is a categorical cokernel (Ā, p̄), where Ā =

⊕
i∈Ī Z is a free

abelian group, and p̄ : F0 → Ā. Then there are isomorphisms of abelian groups⊕
j∈N

Z ∼= HomZ

(∏
i∈N

Z;Z

)
∼= {f : F0 → Z | f ◦ g1 ≡ 0: F1 → Z} ∼= HomZ(Ā,Z).

19It is in general true that if R is a PID (or a field!), then a sub-R-module of a free R-module

is again free. This is false for generic rings.
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The first bijection is given by the black-boxed fact; the second is given by the fact
that

∏
i∈N Z is a cokernel of g1 in the category ZMod; the third is given by the

assumption that Ā is a cokernel of g1 in the category ZModfree. And now we see
a contradiction: if Ī is finite, then the first group is an infinitely generated free
abelian group, and the last is a finitely generated free abelian group; if instead Ī is
infinite, then the first is a countable group and the last is a more-than-countable
group.

The previous example shows that it is possible to find an additive category C that

does not admit all categorical cokernels of its morphisms. Taking
(
ZModfree

)op
,

we also get an example of an additive category that does not admit all categorical
kernels. The next definition will thus discriminate good additive categories like

RMod and ModR from less well-behaved additive categories like ZModfree.

Definition 7.28. An additive category C is an abelian category if the following
hold20:

• every morphism f : x→ y in C admits a categorical kernel and a categorical
cokernel;

• if i : x→ y is a monomorphism and (ȳ, p̄) is a categorical cokernel of i, then
(x, i) is a categorical kernel of p̄;

• if p : x → y is an epimorphism and (x̄, ī) is a categorical kernel of p, then
(y, p) is a categorical cokernel of ī.

The categories RMod and ModR are abelian. An abelian category is the right
place where to define exact sequences, and in general where to study homological
algebra. For example, a priori one can define the image of a morphism f : x → y
in an abelian category C in two different ways:

• Im1(f) is a categorical kernel of the natural map y → coker(f);
• Im2(f) is a categorical cokernel of the natural map ker f → x.

The map f : x → y is such that the composition ker f → x → y is zero, hence
it induces a map Im2(f) → y; this map has the property that the composition
Im2(f) → y → coker(f) is zero (check this carefully!), hence it induces a map
Im2(f) → Im1(f). The axioms of abelian category imply that this last map is an
isomorphism. It follows that in an abelian category there is a well-behaved notion
of “image of a morphism”.

A sequence . . . xi+1
gi+1→ xi

gi→ xi−1 . . . in an abelian category can be declared to be
exact at xi if gi◦gi+1 = 0 is the zero map, and the natural map Im2(gi+1)→ ker(gi)
is an isomorphism (here it is convenient to use the second definition of image, as a
coker, in order to define a map out of it).

Exercise 7.29. Define projective and injective objects in a generic abelian cate-
gory, mimicking Lemmas 5.3 and 5.13.

8. Chain complexes and homology

We fix a ring R throughout the section and work in the category RMod of left R-
modules. An analogue discussion could be carried out in ModR, or in any abelian
category A.

20here 0 denotes the zero object of C i.e. the initial and terminal object; we use that C is
additive to invoke the existence of this object.
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8.1. Chain complexes. We already saw the notion of chain complex in Definition
3.14, but let us repeat it, with a slightly different notation that is somehow more
standard.

Definition 8.1. A chain complex in RMod is the datum (C•, d) of a sequence
C•(Ci)i∈Z of left R-modules Ci ∈ RMod, and a sequence d = (di : Ci → Ci−1)i∈Z
of R-linear maps between them, with the requirement that for all i ∈ Z the compo-
sition di ◦ di−1 : Ci → Ci−2 is the zero map. A chain complex can be represented
by a diagram as follows:

. . . Ci+1 Ci Ci−1 . . . .
di+2 di+1 di di−1

The condition that di ◦ di−1 = 0 can be reformulated by saying that Im(di) ⊆
ker(di−1). However, we do not require equality in the containment (otherwise
we would get an exact sequence, which is a special case of chain complex). The
elements of Ci are called i-chains / chains of degree i, and the map di is called the
ith differential / boundary map.

Definition 8.2. Let (C•, d) be a chain complex in RMod. For all n ∈ Z we define
the nth homology group of (C•, d), denotedHn(C•, d), as the quotient ker(dn)/Im(dn+1),
which is again a left R-module.21

Note that Hn(C•, d) is neither a quotient module nor a submodule of Cn: it is rather
a subquotient, that is, it is the quotient of a submodule of Cn by a subsubmodule;
or equivalently, it is a submodule of a quotient of Cn.

Notation 8.3. Often we denote by C• a chain complex (C•, d), leaving the dif-
ferentials understood. For i ∈ Z we denote by Zi(C•) = ker(di) ⊆ Ci, and i-
chains lying inside Zi(C•) are called i-cycles / cycles of degree i. We also denote
Bi(C•) = Im(di+1) ⊆ Zi(C•) ⊆ Ci, and i-cycles lying inside Bi(C•) are called
i-boundaries / boundaries of degree i.

In this notation, we have Hn(C•) = Zn(C•)/Bn(C•).
Why are we interested in chain complexes and their homology?

• One motivation comes from the already-mentioned fact that, in general, an
additive functor between abelian categories F : A → B (think of categories
of modules, if you like) sends exact sequences to chain complexes that may
not be exact sequences. Homology groups should measure the “failure of
a chain complex from being an exact sequence”, and therefore they could
help keeping track of what’s going on when we manipulate exact sequences
with additive functors.
• Historically, chain complexes and homology were introduced in order to

associate algebraic invariants to topological spaces, in order to distinguish
non-homeomorphic spaces. Let X and Y be given topological spaces: if
X and Y are homeomorphic, we can prove it by exhibiting a continuous
bijection X → Y with continuous inverse; but if X and Y are not homeo-
morphic, how are we going to prove it? We usually cannot “try” one by one
all maps X → Y and check that all of them are not homeomorphism! An
algebraic invariant α of topological spaces is roughly supposed to associate
with every topological space X an invariant α(X), which can be a number,

21Somehow, one usually says “homology group” instead of “homology module”...
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a vector space, a finitely generated abelian group... in any case something
easily computable and comparable; moreover we require that if X and Y are
homeomorphic, then α(X) is “equivalent” to α(Y ) (if they are numbers,
they must be equal; if they are vector spaces or abelian groups, they must
be isomorphic, and so on). An algebraic invariant can be used backwards to
prove non-homeomorphism of spaces: if X and Y are two spaces and if we
can compute α(X) and α(Y ) and determine that they are not “equivalent”,
we have a proof that X and Y are not homeomorphic.
• In a similar way, chain complexes and homology are used to attach al-

gebraic invariants to other complicated mathematical objects, like (non-
commutative) groups and algebraic varieties.

Example 8.4. Consider the short exact sequence of abelian groups Z ·2→ Z [−]2→ Z/2
as an (exact) chain complex

. . . C2 = 0 C1 = Z C0 = Z C−1 = Z/2 C−2 = 0 . . .·2 [−]2

We can apply the additive functor − ⊗Z Z/2 and obtain (after a little work) the
chain complex

. . . C ′2 = 0 C ′1 = Z/2 C ′0 = Z/2 C ′−1 = Z/2 C ′−2 = 0 . . .0 IdZ/2

The homology groups of C ′• can be computed as follows:

• H−1(C ′•) = Z−1(C ′•)/B−1(C ′•)
∼= (Z/2)/(Z/2) ∼= 0, i.e. C ′• is exact at C ′−1;

• H0(C ′•) = Z0(C ′•)/B0(C ′•)
∼= 0/0 ∼= 0, i.e. C ′• is exact at C ′0;

• H1(C ′•) = Z1(C ′•)/B1(C ′•)
∼= (Z/2)/0 ∼= Z/2, and in particular C ′• is not

exact at C ′1;
• for all other n, the homology group Hn(C ′•) is a subquotient of the zero

module Cn = 0, and hence it vanishes as well.

The homology group H1(C ′•) measures the failure of − ⊗Z Z/2 preserving the ex-

actness of the SES Z ·2→ Z [−]2→ Z/2.

Example 8.5. For n ≥ 0 denote by ∆n the standard n-simplex:

∆n =
{

(x0, . . . , xn) ∈ Rn+1 |x0, . . . , xn ≥ 0 ; x0 + . . . xn = 1
}
⊂ Rn+1.

Let X be a topological space; then we can define, for all n ≥ 0, the set Sn(X) of
all continuous maps σ : ∆n → X, and the associated free abelian group Sn(X) =⊕

σ∈Sn(X) Z. For n < 0 we also let Sn(X) be the zero abelian group.

For n ≥ 1 and for all 0 ≤ i ≤ n we define dn,i : ∆n−1 → ∆n as the continuous map
(x0, . . . , xn−1) 7→ (x0, . . . , xi−1, 0, xi, . . . , xn−1) inserting a “0” in position i. Every
continuous map σ : ∆n → X gives rise to a map dn,iσ := (σ ◦ dn,i) : ∆n−1 → X.
We thus get, for all 0 ≤ i ≤ n, a map of sets dn,i : Sn(X)→ Sn−1(X).
We can now define a map dn,i : Sn(X)→ Sn−1 by setting on basis elements ισ(1) 7→
ιdn,iσ(1). Finally, we take an alternating sum of the previous, and define

dn = dn,0 − dn,1 + dn,2 − · · ·+ (−1)ndn,n : Sn(X)→ Sn−1X.

For n ≤ 0 we also let dn be the zero map. And now three miracles occur.

• The collections (Sn(X))n∈Z, together with the maps dn : Sn(X)→ Sn−1(X),
gives rise to a chain complex.
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• As you may have noticed, the abelian groups Sn(X) tend to be huge: they
have a generator for each continuous map ∆n → X; nevertheless, the ho-
mology groups Hi(S•(X)) are often small and, most importantly, com-
putable.
• It should be apparent that if there is a homeomorphism X ∼= Y between

two spaces, then we get bijections of sets Sn(X) ∼= Sn(Y ) and thus isomor-
phisms of abelian groups Sn(X) ∼= Sn(Y ), so we can in fact identify the
two chain complexes (S•(X), d) and (S•(Y ), d). In particular, we have that
for all i ∈ Z, the abelian groups Hi(S•(X)) and Hi(S•(Y )) are isomorphic.
Viceversa, suppose that X and Y are two spaces, and suppose that for
some i both abelian groups Hi(S•(X)) and Hi(S•(Y )) can be computed,
they are finitely generated abelian groups, but they have different lists of
cyclic summands: then Hi(S•(X)) and Hi(S•(Y )) are not isomorphic, and
hence X and Y are not homeomorphic.

Exercise 8.6. Let X be a topological space and let G be a (discrete) group.
Suppose that G acts on the space X by homeomorphism. Prove the following:

• G acts on each set Sn(X);
• each Z-module Sn(X) can be upgraded to a Z[G]-module;
• each homology group Hn(S•(X)) is also naturally a Z[G]-module.

It can happen that two spaces X and Y both have an action of G, and are homeo-
morphic, but we find it difficult to find a G-equivariant homeomorphism X → Y ,
and we start thinking that it just does not exist. Then the abelian groups Hn(X)
and Hn(Y ) are going to be isomorphic for all n, but perhaps we are lucky enough
to find some n such that Hn(X) and Hn(Y ) are not isomorphic as Z[G]-modules;
this would be a proof that X and Y are not G-equivariantly homeomorphic.

Example 8.7. Here is an example of a chain complex of abelian groups, together
with the subgroups of cycles, boundaries, and the homology groups. All dots rep-
resent infinite sequences of zero abelian groups and zero maps between them, so
they can be safely neglected.

. . . C7 C6 C5 C4 C3 C2 C1 C0 . . .

. . . 0 Z Z/6 Z/6 Z Q Q/Z 0 . . .

Z6 = 2Z Z5 =〈[3]6〉 Z4 = Z/6 Z3 = 0 Z2 = Z Z1 = Q/Z

B6 = 0 B5 =〈[3]6〉 B4 =〈[2]6〉 B3 = 0 B2 = 5Z B1 = Q/Z

H6
∼= Z H5

∼= 0 H4
∼= Z/3 H3

∼= 0 H2
∼= Z/5 H1

∼= 0.

[3·−]6 [2·−]6 0 ·5 [−]Z

8.2. Chain maps.

Definition 8.8. Let (C•, d
C) and (D•, d

D) be two chain complexes in RMod. An
R-linear chain map f : C• → D• is a collection of R-linear maps fi : Ci → Di such
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that the following diagram commutes for all i ∈ Z:

Ci Ci−1

Di Di−1.

dCi

fi fi−1

dDi

An isomorphism of chain complex is an R-linear chain map f such that each fi is
an R-linear isomorphism.

Given R-linear chain maps C•
f→ D• and D•

g→ E•, their composition f ◦g is the R-
linear chain map C• → E• obtained as the collection of R-linear maps fi ◦gi : Ci →
Ei: check that this is indded again an R-linear chain map.
We thus obtain a category Ch(RMod) with objects being chain complexes in RMod,
and morphisms being R-linear chain maps. We shall also abbreviate RCh =
Ch(RMod) and ChR = Ch(ModR).
Note that if f, g : C• → D• are R-linear chain maps, then their sum f + g, given in
degree i by fi + gi : Ci → Di, is again an R-linear chain map. Check that in this
way the category RCh becomes enriched over abelian groups.
Note also that if C• and D• are objects in RCh, then we can define C•⊕D• as the
chain complex whose i-chains are Ci⊕Di, and whose ith differential is given by the
map Ci ⊕Di → Ci−1 ⊕Di−1 mapping Ci → Ci−1 by the ith differential of C•, and
Di → Di−1 by the ith differential of D•. Check that C• ⊕D• is both a categorical
product and a categorical coproduct of C• and D• in RCh.
Check also that the zero chain complex 0•, all of whose R-modules are the zero
module, is an initial and terminal object in RCh.

We obtain (after checking a lot of details) that RCh is an additive category. In
general, for an abelian category A, one can define a new category Ch(A) of chain
complexes in A, and this category is an additive category.
We have already invoked in Example 8.5 the principle that if two chain complexes
are isomorphic, we can just identify them and thus get identifications of their ho-
mology groups. To make this precise, we need the following construction.
Let f : (C•, d

C)→ (D•, d
D) be an R-linear chain map. Then the following happens,

for all n ∈ Z:

• the map fi : Ci → Di restricts to anR-linear map Zi(C•)→ Zi(D•): indeed,
if x ∈ Zi(C•) ⊆ Ci, then (x)dCi = 0, hence 0 = ((x)dCi )fi−1 = ((x)fi)d

D
i ,

implying that fi(x) ∈ Zi(D•);
• the map fi : Zi(C•)→ Zi(D•) further restricts to anR-linear map Bi(C•)→
Bi(D•): check it!

As a consequence, the composition Zi(C•)
fi→ Zi(D•) → Hi(D•) vanishes on

Bi(C•), and hence induces an R-linear map out of the quotient Hi(C•)→ Hi(D•).

Definition 8.9. Let f : C• → D• be an R-linear chain map. We denote by
Hn(f) : Hn(C•)→ Hn(D•) the induced R-linear map between homology groups.
We obtain, for each n ∈ Z, a functor Hn(−) : RCh→ RMod, sending C• 7→ Hn(C•)
and sending (f : C• → D•) 7→ (Hn(f) : Hn(C•)→ Hn(D•).
Check that Hn(−) is also an additive functor: for instance Hn(0•) ∼= 0 and Hn(C•⊕
D•) ∼= Hn(C•)⊕Hn(D•).
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Often the map Hn(f) is written simply as f∗. The “∗” is a common way to mean
that the new map is constructed in a functorial way from the old map.

Example 8.10. If f : C• → D• is an isomorphism, then Hn(f) : Hn(C•) →
Hn(D•) is an isomorphism. However, the converse does not hold: consider for
example the following chain map of chain complexes over Z:

. . . C3 = 0 C2 = Z C1 = Z C0 = 0 . . .

. . . D3 = 0 D2 = 0 D1 = 0 D0 = 0 . . .

IdZ

Then both C• and D• are exact sequences, that is, Hn(C•) ∼= Hn(D•) ∼= 0 for all
n ∈ Z; it follows that Hn(f) is an isomorphism between zero groups for all n. Yet
C• and D• are not isomorphic chain complexes.

Example 8.11. If φ : X → Y is a continuous map of topological spaces, then it
induces a map of chain complexes S•(X) → S•(Y ), which is an isomorphism of
chain complexes in the special case in which φ is a homeomorphism.
In turn, φ induces a map of homology groups Hn(S•(X))→ Hn(S•(Y )), which is an
isomorphism of abelian groups in the special case in which φ is a homeomorphism.

8.3. RCh as an abelian category. In constructing the functor Hn(−) we have
noticed that if we have an R-linear chain map f : (C•, d

C)→ (D•, d
D) then fi sends

Zi(C•) inside Zi(D•) and Bi(C•) inside Bi(D•). One can use a similar argument
to prove the following:

• for all i ∈ Z, the differential dCi : Ci → Ci−1 sends ker(fi) inside ker(fi−1);
• we obtain a new chain complex (ker(f), dC |ker(f)), which is a categorical

kernel of f in the category RCh;
• for all i ∈ Z, the differential dDi : Di → Di−1 sends Im(fi) inside Im(fi−1),

and thus induces a differential d
coker(f)
i : coker(fi)→ coker(fi−1);

• we obtain a new chain complex (coker(f), dcoker(f), which is a categorical
cokernel of f in the category RCh;

It turns out (after checking many details) that the category RCh is an abelian
category22. More generally, whenever A is an abelian category, then also Ch(A) is
an abelian category. In the following examples we discuss what kernels, cokernels
and images are in the category RCh, and investigate also the notion of exactness.

Example 8.12. Consider an R-linear chain map f : C• → D•; then:

• ker(f) is a sub-chain complex of C•, obtained by putting ker(fi) in degree
i, and by restricting the differential of C•;

• Im(f) is a sub-chain complex of D•, obtained by putting Im(fi) in degree
i, and by restricting the differential of D•;

• coker(f) is the quotient chain complex D•/Im(f), obtained by putting
Di/Im(fi) in degree i, with the induced differential coming from the differ-
ential of D•;

• “f is a monomorphism” iff “ker(f) is the zero chain complex” iff “for all
i ∈ Z the R-module ker(fi) vanishes” iff “each fi is injective”; in this case
we also say that f is an injective R-linear chain map;

22We already mentioned that it is an additive category
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• “f is an epimorphism” iff “coker(f) is the zero chain complex” iff “for all
i ∈ Z the R-module coker(fi) vanishes” iff “each fi is surjective”; in this
case we also say that f is a surjective R-linear chain map.

Example 8.13. A SES of chain complexes in RMod has the form

A• B• C•,
i p

where A•, B• and C• are chain complexes of left R-modules, i is an injective R-
linear chain map, p is a surjective R-linear chain map, and there is an equality
ker(p) = Im(i) of sub-chain complexes of B•.
In particular, for all j ∈ Z we obtain a SES of left R-modules

Aj Bj Cj .
ij pj

Example 8.14. A chain complex in RCh is commonly known with the name of
double complex of left R-modules: it has the form of a diagram of left R-modules
and R-linear maps

...
...

...
...

. . . Ci+1,j+1 Ci+1,j Ci+1,j−1 Ci+1,j−2 . . .

. . . Ci,j+1 Ci,j Ci,j−1 Ci,j−2 . . .

. . . Ci−1,j+1 Ci−1,j Ci−1,j−1 Ci−1,j−2 . . .

...
...

...
...

such that each square commutes, each composition of two consecutive horizontal
maps is the zero map, and each composition of two consecutive vertical maps is
the zero map. In other words: each column is a chain complex, each sequence
of horizontal arrows between two consecutive columns is a chain map, and the
composition of two consecutive chain maps between columns is the zero chain map.
If (and only if) each row is exact, we get an exact sequence of chain complexes,
whose terms are the columns and whose maps are the chain maps between columns.

So far we have seen that both RCh and RMod are abelian categories; moreover, for
all n ∈ Z, we have constructed an additive functor Hn(−) : RCh → RMod. The
question whether Hn(f) is an exact functor makes sense, and it would be wonderful
if this were the case; unfortunately, no.

Example 8.15. Let R = Z. Let A•, B•, C• be the chain complexes characterised
as follows:

• An = 0 for all n 6= 0, and A0 = Z;
• Cn = 0 for all n 6= 1, and C1 = Z;
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• Bn = 0 for all n 6= 0, 1, and B1 = B0 = Z; the differential B1 → B0 is IdZ.

Moreover, let i : A• → B• be the chain map characterised by i0 = IdZ, and let
p : B• → C• be the chain map characterised by p1 = IdZ. We obtain a SES of chain
complexes (columns in the following diagram)

...
...

...

A2 = 0 B2 = 0 C2 = 0

A1 = 0 B1 = Z C1 = Z

A0 = Z B0 = Z C0 = 0

A−1 = 0 B−1 = 0 C−1 = 0

...
...

...

IdZ

IdZ

IdZ

If we apply the functors H1(−) and H0(−) we obtain the following short sequences
of abelian groups23

H1(A•) ∼= 0 H1(B•) ∼= 0 H1(C•) ∼= Z;

H0(A•) ∼= Z H0(B•) ∼= 0 H0(C•) ∼= 0.

Sadly, the first sequence is not left exact, and the second is not right exact; so in
general we cannot expect Hn(−) to be neither a left exact nor a right exact functor
(and even less, an exact functor).
However, we notice two remarkable facts:

• both short sequences are exact in the middle;
• the first sequence has a “Z” too much to be exact, sitting on the right, and

also the second sequence has precisely a “Z” too much to be exact, sitting
on the left.

We will explain these phenomena with the snake lemma.

8.4. The snake lemma.

Lemma 8.16 (Snake lemma). Let A•
i→ B•

p→ C• be a SES in RCh. Then there
are natural R-linear maps ∂n : Hn(C•)→ Hn−1(A•), called connecting homomor-
phisms, such that the following is an exact sequence of left R-modules, called the

23All other functors Hn(−) give rise to the trivial SES 0→ 0→ 0, so we neglect them here.
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homology long exact sequence:

. . .

Hn+1(A•) Hn+1(B•) Hn+1(C•)

Hn(A•) Hn(B•) Hn(C•)

Hn−1(A•) Hn−1(B•) Hn−1(C•)

. . .

∂n+2

Hn+1(i) Hn+1(p)

∂n+1

Hn(i) Hn(p)

∂n

Hn−1(i) Hn−1(p)

∂n−1

You should appreciate how the last diagram has the form of a snake. The proof of
the snake lemma is not difficult, but it is very long; I strongly recommend to finish
on your own the beginning of proof that you find here. After the partial proof, I
will comment on the word “natural” appearing in the statement.

Partial proof of the snake lemma. Even before constructing the maps ∂n, we can
check exactness at Hn(B•) of the sequence Hn(A•)→ Hn(B•)→ Hn(C•).
Let therefore x ∈ Zn(B•) be a cycle that represents a homology class [x] ∈ Hn(B•).
Suppose that Hn(p) : [x] 7→ 0 ∈ Hn(C•). This means that (x)pn ∈ Cn is not
only inside Zn(C•) (as the fact that p is a chain map guarantees), but also in
Bn(C•). That means that there exists y ∈ Cn+1 with (y)dCn+1 = (x)pn. By
surjectivity of pn+1 : Bn+1 → Cn+1, we can find z ∈ Bn+1 such that (z)pn+1 = y.
Let w = dBn+1(z). Then we have

(w)pn = ((z)dBn+1)pn = ((z)pn+1)dCn+1 = (y)dCn+1 = (x)pn.

It follows that (x − w)pn = 0; moreover [x − w] = [x] ∈ Hn(B•), because w ∈
Bn(B•). Since An → Bn → Cn is a SES, there exists a unique t ∈ An such that
(t)in = x − w. Moreover we have ((t)dAn )in−1 = ((t)in)dBn = (x − w)dBn = 0, and
since in−1 is injective we conclude that (t)dAn is a cycle in Zn(A•), i.e. it represents
a homology class [t] ∈ Hn(A•). Finally, we have Hn(i) : [t] 7→ [x − w], because
in : t 7→ x− w. The conclusion is that whenever [x] ∈ Hn(B•) is a homology class
in the kernel of Hn(p), there is a homology class [t] ∈ Hn(A•) with Hn(i) : [t] 7→ [x].
This was the difficult half of checking exactness at Hn(B•): the easy part is to
check that Hn(i) ◦ Hn(p) is the zero map, but this follows from the fact that Hn

is an additive functor: Hn(i) ◦Hn(p) = Hn(i ◦ p) = Hn(0) = 0, together with the
fact that i ◦ p = 0 (the last composition is in the category RCh, but degreewise it
is a composition in the category RMod).
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Next, we define an R-linear map ∂̃n : Zn(C•) → Hn−1(A•). Let now x ∈ Zn(C•);
by surjectivity of pn we may find y ∈ Bn with (y)pn = x. Let now z = (y)dBn ; we
then have

(z)pn−1 = ((y)dBn )pn−1 = ((y)pn)dCn = (x)dCn = 0,

because x is a cycle. It follows by exactness of An−1 → Bn−1 → Cn−1 that there
is a unique t ∈ An−1 such that (t)in−1 = z. Moreover we have

((t)dAn−1)in−2 = ((t)in−1)dBn−1 = (z)dBn−1 = ((y)dBn )dBn−1 = 0,

which, together with the fact that in−2 is injective, implies that (t)dAn−1 = 0, i.e.
(t) is a cycle.

We claim that the map of sets ∂̃n : Zn(C•) → Hn−1(A•) sending x 7→ [t] is well-
defined. There was in fact a choice in the above argument, namely we choose one of
the (possibly many) elements y ∈ Bn with (y)pn = x. Suppose that we had chosen
another element y′ ∈ Bn with (y′)pn = x: what would have been the result?
Instead of z, we would have taken z′ = (y′)dBn , and instead of t, we would have
taken the unique element t′ ∈ An−1 such that (t′)in−1 = z′. However, note that
y′−y is in the kernel of pn, and hence in the image of in. Let w ∈ An be the unique
element with (w)in = y′ − y. We can now compute

((w)dAn )in−1 = ((w)in)dBn = (y′ − y)dBn = z′ − z = (t′ − t)in−1,

and since in−1 is injective, we obtain that (w)dAn = t′ − t. The conclusion is:
perhaps t′ 6= t, but at least the difference of these two cycles is a boundary, and
hence [t] = [t′] ∈ Hn−1(A•).

Great, the map of sets ∂̃n : Zn(C•) → Hn−1(A•) is well-defined. Is it an R-linear
map?

• If x1, x2 ∈ Zn(C•) and y1, y2 ∈ Bn are elements such that (y1)pn = x1 and
(y2)pn = x2, then y1 + y2 is a good example of an element of Bn which is

sent to x1 +x2 under pn; we can use this element to construct ∂̃n(x1 +x2),
and obtain (with obvious meaning of the symbols)

∂̃n(x1 + x2) = [t1 + t2] = [t1] + [t2] = ∂̃n(x1) + ∂̃n(x2).

• If x ∈ Zn(C•) and r ∈ R, and if y ∈ Bn is such that (y)pn = x, then
r ·y ∈ Bn is a good example of an element in Bn which is sent to r ·x under
pn; again we obtain, after a few simple steps, that

∂̃n(r · x) = [r · t] = r · [t] = r · ∂̃n(x).

Finally, is it true that ∂̃n vanishes on the submodule Bn(C•), so that it induces an
R-linear map ∂n : Hn(C•)→ Hn−1(A•)? If x ∈ Bn(C•), then there exists u ∈ Cn+1

with (u)dCn+1 = x; by surjectivity of pn+1 we can find v ∈ Bn+1 with (v)pn+1 = u;
we then have

((v)dBn+1)pn = ((v)pn+1)dCn+1 = (u)dCn+1 = x,

so that the element y := (v)dBn+1 can be used to construct ∂̃n(x). But the next step

is to take z = (y)∂Bn = ((v)dBn+1)dBn = 0, and then also t ∈ An−1 will just be 0. It

follows that ∂̃n(x) = [0] ∈ Hn−1(A•).
At this point I stop. I think that it takes at least one hour to check all details of
the proof (including checking that all maps are R-linear). And as I said, this is the
kind of proof that it is better to do on one’s own. �
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About the word “natural”: suppose that you have two SES of chain complexes,
connected by R-linear chain maps as in the following diagram, which is assumed to
be a commutative diagram24

A• B• C•

A′• B′• C ′•

i

fA

p

fB fC

i′ p′

Then combining the two long exact sequences provided by the snake lemma, and
the morphisms induced in homology by the chain maps fA, fB and fC , we obtain
a diagram

. . . Hn(A•) Hn(B•) Hn(C•) Hn−1(A•) Hn−1(B•) . . .

. . . Hn(A′•) Hn(B′•) Hn(C ′•) Hn−1(A′•) Hn−1(B′•) . . .

Hn(i)

Hn(fA)

Hn(p)

Hn(fB)

∂n

Hn(fC)

Hn−1(i)

Hn−1(fA) Hn−1(fB)

Hn(i′) Hn(p′) ∂′n Hn−1(i′)

The first two squares (of the one drawn) and the fourth one commute: indeed
Hn(−) is a functor (and so is Hn−1(−)). It would therefore be very sad if the third
square didn’t commute! Fortunately, it does.25

Example 8.17. What happens if A• and C• are chain complexes, and we take

B• := A•⊕C•? The we obtain a split SES of chain complexes A•
i→ B•

p→ C•, i.e.
there is an R-linear chain map s : C• → B• which is a section of p.
It follows that for all n ∈ Z the R-linear map Hn(p) : Hn(B•)→ Hn(C•) is surjec-
tive: it is in fact split surjective, i.e. it is surjective and admits a section, namely
Hn(s). In a long exact sequence, if a map is surjective, then the next map is zero,
and the second next map is injective. The long exact sequence of homology groups

24We can think of a category SES(RCh) whose objects are short exact sequences of chain

complexes of left R-modules, and whose morphisms are diagrams like the given one
25Can you interpret ∂n as a natural transformation between two functors SES(RCh)→ RMod?
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looks like
. . .

Hn+1(A•) Hn+1(B•) Hn+1(C•)

Hn(A•) Hn(B•) Hn(C•)

Hn−1(A•) Hn−1(B•) Hn−1(C•)

. . . ,

∂n+2=0

Hn+1(i) Hn+1(p)

∂n+1=0

Hn(i) Hn(p)

∂n=0

Hn−1(i) Hn−1(p)

∂n−1=0

i.e. it splits into several short exact sequences (which in fact are split short exact
sequences) Hn(A•) → Hn(B•) → Hn(C•). This should be no surprise, since each
functor Hn(−) is additive.

8.5. Suspension, desuspension, cone. Given a chain complex (C•, d) we can
define new chain complexes by shifting indices.

Notation 8.18. Let (C•, d
C) be a chain complex in RMod. For all k ∈ Z we define

Σk(C•, d
C) as the chain complex (D•, d

D) such that Di = Ci−k, and dDi = dCi−k.
This is often called the k-fold suspension of C•. Another common notation for
ΣkC• (yes, one often leaves the differential understood...) is C•[k].

We note that Hn(C•[k]) ∼= Hn−k(C•). A chain map f : C• → D• gives rise to a
chain map ΣkC• → ΣkD•, and we can in fact regard Σk− as an autofunctor of the
category RCh, with inverse functor Σ−k−.

Definition 8.19. Let f : C• → D• be an R-linear chain map. We define a new
chain complex Cone(f)• as follows:

• we set Cone(f)j = Dj ⊕ Cj−1;
• we define the differential dCone

j : Dj ⊕ Cj−1 → Dj−1 ⊕ Cj−2 as follows:

– on the summand Dj we take the map y 7→ ((y)dDj , 0);

– on the summand Cj−1 we take the map x 7→ ((x)fj−1,−(x)dCj−1).

The previous definition might seem awkward, but it allows us to write a SES of
chain complexes starting with D• and ending with ΣC• = Σ1C•:

D• Cone(f)• ΣC•
i p

We have indeed obvious SES of left R-modules Dj → Cone(f)j = Dj ⊕ Cj−1 →
ΣCj = Cj−1; these SESs assemble into a SES of chain complexes (check this: some
squares must commute!).
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At first glance it could seem that Cone(f) is just the direct sum of the chain
complexes D• and ΣC•, but this is (in general) not true! Indeed the connecting
homomorphism ∂n : Hn(ΣC•) → Hn−1(D•) coincides, after identifying Hn(ΣC•)
with Hn−1(C•), with the map (−1)nHn−1(f) : Hn−1(C•)→ Hn−1(D•).
The previous construction should be seen in the following light:

• if f : C• → D• is injective, we can consider the chain complex coker(f) and
complete C• → D• to a SES of chain complexes C• → D• → coker(f),
yielding a homology long exact sequence containing the morphisms Hn(f);
• if f : C• → D• is surjective, we can consider the chain complex ker(f)

and complete C• → D• to a SES of chain complexes ker(f) → C• → D•,
yielding a homology long exact sequence containing the morphisms Hn(f);
• but if f : C• → D• is neither injective nor surjective, what do we do? We

complete C• and D• to a SES of chain complexes D• → Cone(f)• → ΣC•,
where the last chain complex is not quite C•, but also very close to it;
up to a sign, the maps Hn(f) occur as connecting homomorphisms in the
associated homology long exact sequence.

8.6. Cochain complexes. There is a dual notion, often used in the literature, of
cochain complex. A cochain complex is usually denoted (C•, δ), and consists of left
R-modules Ci, for all i ∈ Z, together with maps δi : Ci → Ci+1. So the degree
increases by 1 instead of decreasing by 1. The composition of two differentials is
still required to be the zero map.
Clearly, given a cochain complex (C•, δ), we can define a chain complex (C•, d) by
setting Ci = C−i and (di : Ci → Ci−1) = (δ−i : C−i → C−i+1). So up to mirroring
indices, there is not a great difference between chain and cochain complexes.
Homology groups of a cochain complex are called cohomology groups, and usually
one denotes Hn(C•) the group that, in the mirroring above, would be denoted
H−n(C•). Everything in this section has an analogue version for cochain complexes
and cohomology.

Example 8.20. Let (C•, d) be a chain complex in RMod, and let F : RModop →
SMod be a contravariant, additive functor26.
Then we obtain a cochain complex F (C)• = F (C•): we let F (C)i = F (Ci, and we
let δi = F (di+1) : F (Ci)→ F (Ci+1). The fact that the functor is contravariant has
the effect of changing a chain complex into a cochain complex (and viceversa).
As a specific example, consider the chain complex of Z-modules

. . . C4 = 0 C3 = Z C2 = Z2 C1 = Z C0 = Z C−1 = 0 . . .
−·(2,0) (m,n)7→n 0

If we apply the additive functor HomZ(−,Z) we obtain a cochain complex that,
after simple manipulations, reads

. . . D4 = 0 D3 = Z D2 = Z2 D1 = Z D0 = Z D−1 = 0 . . .
(m,n) 7→2m −·(0,1) 0

where we wrote Di = HomZ(Ci,Z). If you want to have fun, compute the homology
and cohomology groups of the two complexes: they will be finitely generated abelian
groups, and you will notice a very regular behaviour of the summands “Z”, but a
strange behaviour of the summands “Z/k” with k ≥ 2.

26For simplicity I keep making examples involving only abelian categories of the form RMod
or ModR...
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9. Chain homotopies, Hom and tensor of chain complexes

9.1. Chain homotopies. In this subsection we work for simplicity in the category

RMod of left R-modules over a ring R, but the discussion can be generalised to any
abelian category.

Definition 9.1. Let f : C• → D• be a chain map between chain complexes in

RMod. We say that f is a quasi-isomorphism if for all n ∈ Z the induced map
Hn(f) : Hn(C•)→ Hn(D•) is an isomorphism of left R-modules.

For instance, the chain map from Example 8.10 is a quasi-isomorphism:

. . . C3 = 0 C2 = Z C1 = Z C0 = 0 . . .

. . . D3 = 0 D2 = 0 D1 = 0 D0 = 0 . . .

IdZ

Example 9.2. Let C• be any chain complex in RCh and let 0• be the trivial chain
complex. Then the (unique) chain map f : 0• → C• is a quasi-isomorphism if and
only if all homology groups of C• are the zero R-module, i.e. if and only if C• is
an exact sequence.
Of course, C• being an exact sequence is also equivalent to requiring that the
(unique) chain map g : C• → 0• is a quasi-isomorphism.

Notation 9.3. A chain complex with vanishing homology groups is also called an
acyclic chain complex; this is equivalent to requiring that the chain complex is in
fact an exact sequence.

Example 9.4. Suppose now that C• is an acyclic complex, and let f and g be the
chain maps from Example 9.2. Then the composition f ◦ g : 0• → 0• is the identity
chain map of 0• (what else could it be?), so in particular it is an isomorphism.
Instead, the composition g ◦ f : C• → C• is the zero chain map, which is not the
same as the identity of C•.
It would be nice, however, if it was possible to “perturb” the chain map IdC• : C• →
C• to the map 0: C• → C•: we could then pretend that, up to “perturbation”, also
g ◦ f is the identity of C•, and thus f and g are inverse isomorphisms...

The following definition gives a useful interpretation of what a “perturbation” of a
chain map could be.

Definition 9.5. Let f, g : C• → D• be chain maps. A chain homotopy from f to g
is a sequence H = (Hi)i∈Z of R-linear maps Hi : Ci → Di+1 such that for all i ∈ Z
we have an equality of R-linear maps

gi − fi = (Hi ◦ dDi+1) + (dCi ◦ Hi−1) : Ci → Di.

We write H : C• → D•+1 for a chain homotopy.
We say that f and g are chain homotopic chain maps if there is a chain homotopy
between f and g. We write f ' g.
We say that f is chain null-homotopic if there is a chain homotopy between f and
the zero map 0: C• → D•. We write f ' 0.

If f is chain homotopic to g, then difference g − f is a chain map that can be
written as a sum of two contributions (H ◦ dD) and (dC ◦ H); in general neither
of the two summands represents a chain map on its own. The fact that both



HOMALG 2021 69

summands contain a differential “d”, together with the intuition that differentials
should attain “small” values, suggests that g − f should attain “small” values and
thus f is a “perturbation” of g.
I also hope that the notation H : C• → D•+1 does not lead you to the (wrong) idea
that a chain homotopy H is a chain map from C• to Σ−1D•.
Since a differential sends a chain in degree i to a chain in degree i − 1, a chain
homotopy should do the opposite (increase degrees by 1), so that the composition
of the two is degree-preserving.

Example 9.6. Let C• be the chain complex from Example 9.2. Then we can define
a chain homotopy H : C• → C•+1 from IdC• to 0 by declaring H1 : C1 → C2 to be
IdZ, and all other maps Hi to be zero. We have indeed IdC• = H◦ dC + dC ◦H, as
can be checked degreewise (only degrees 1 and 2 are interesting).

Example 9.7. Let C• and D• be two chain complexes, and let H = (Hi) be any
collection of R-linear maps Hi : Ci → Di+1. For all i ∈ Z define an R-linear map
fi : Ci → Di by fi = (Hi ◦ dDi+1) + (dCi ◦ Hi−1). Then f = (fi)i∈Z is automatically
a chain map C• → D•. Indeed we have

dCi+1 ◦ fi = dCi+1 ◦
(
(Hi ◦ dDi+1) + (dCi ◦ Hi−1)

)
= (dCi+1 ◦ Hi ◦ dDi+1) + (dCi+1 ◦ dCi ◦ Hi−1)

= dCi+1 ◦ Hi ◦ dDi+1

= (dCi+1 ◦ Hi ◦ dDi+1) + (Hi+1 ◦ dDi+2 ◦ dDi+1)

=
(
(dCi+1 ◦ Hi) + (Hi+1 ◦ dDi+2

)
◦ dDi+1

= fi+1 ◦ dDi+1.

Moreover H is, by the very definition of f , a chain homotopy from f to 0.

The previous example shows that any collection (Hi) of R-linear maps Hi : Ci →
Di+1 can arise as a chain homotopy between two chain maps. In the following we
will often define chain homotopies on their own, just as sequences of R-linear maps,
without the need of two chain maps to compare.

Lemma 9.8. Let C• adn D• be chain complexes, and consider the abelian group
Hom

RCh(C•, D•) of all (R-linear) chain maps C• → D•. Then the subset

Hom'0
RCh(C•, D•) ⊆ Hom

RCh(C•, D•)

of chain null-homotopic chain maps is in fact an abelian subgroup. In particular
“being chain homotopic chain maps” is an equivalence relation on Hom

RCh(C•, D•),
coinciding with the equivalence relation “differing by a chain null-homotopic chain
map”.

Proof. Every chain map f : C• → D• is chain homotopic to itself, by using H ≡ 0:
indeed for all i ∈ Z we have fi − fi = 0 = (0 ◦ dDi+1) + (dCi ◦ 0).
If there is a chain homotopy H from f to g, then −H is a chain homotopy from g
to f : indeed for all i ∈ Z we have

gi − fi = −(fi − gi) = −((Hi ◦ dDi+1) + (dCi ◦ Hi−1))

= (−Hi ◦ dDi+1) + (dCi ◦ −Hi−1),

using that composition of R-linear maps is Z-bilinear.
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Finally, if there are chain homotopies H from f to g and H′ from g to l, then H+H′
is a chain homotopy from f to l: indeed for all i ∈ Z we have

li − fi = (li − gi) + (gi − fi)
= (Hi ◦ dDi+1) + (dCi ◦ Hi−1) + (H′i ◦ dDi+1) + (dCi ◦ H′i−1)

= ((Hi +H′i) ◦ dDi+1) + (dCi ◦ (Hi−1 +H′i−1)),

using again that composition of chain maps is Z-bilinear. �

How do chain homotopies and composition of chain maps interrelate?

Example 9.9. Let f, g : C• → D• be chain maps, and letH : C• → D•+1 be a chain
homotopy from f to g. Let moreover l : D• → E• be another chain map. We can
then define a chain homotopyH′ : C• → E•+1 by settingH′i = Hi◦li+1 : Ci → Ei+1.
We then have, for all i ∈ Z,

(gi ◦ li)− (fi ◦ li) = (gi − fi) ◦ li
=
(
Hi ◦ dDi+1 + dCi ◦ Hi−1

)
◦ li

= Hi ◦ dDi+1 ◦ li + dCi ◦ Hi−1 ◦ li
= Hi ◦ li+1 ◦ dEi+1 + dCi ◦ Hi−1 ◦ li
= H′i ◦ dEi+1 + dCi ◦ H′i−1,

where we have used, among other things, that l is a chain map. Hence H′ is a chain
homotopy from f ◦ l to g ◦ l.

The previous example shows that if we perturb f up to homotopy and then compose
it with l, the result is a perturbation of f ◦ l. An analogue chack can be made for
precomposition of f with a chain map. In other words, composition of chain maps
induces a well-defined composition of chain homotopy classes of chain maps.

Definition 9.10. We define a Z-linear category K(RMod) (called the homotopy
category of Ch(RMod)) as follows:

• the objects of K(RMod) are chain complexes of left R-modules;
• the abelian group of morphisms HomK(RMod)(C•, D•) is the quotient group

Hom
RCh(C•, D•)/Hom'0

RCh(C•, D•).

Composition of morphisms is induced from the composition in RCh. For a chain
map f : C• → D• we denote by [f ] the corresponding morphism in K(RMod).
We define a functor K : RCh→ K(RMod), sending an object (a chain complex) to
itself, and chain map to its chain homotopy class.

Example 9.11. For all i ∈ Z there is a functor θi : RMod→ RCh sending M to the
chain complex θi(M)• with θi(M)i = M , and all other θi(M)j = 0. An R-linear
map f : M → N is sent to the chain map θi(f) with θi(f)i = f , and all other maps
θi(f)j are clearly the zero map.
Now, suppose that C• = θi(M) and D• = θi(N) are in the image of the functor
θi. Then every chain homotopy H : C• → D•+1 vanishes, whereas a chain map
C• → D• is equivalent to what it does in degree i, i.e. to an R-linear map M → N .
It follows that we have bijections of abelian groups (induced by the various functors
considered)

HomR(M,N)
θi∼= Hom

RCh(C•, D•)
K∼= HomK(RMod)(C•, D•).
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In other words, both functors θi and K ◦ θi are fully faithful.

The category K(RMod) is an additive category, and even more holds: the zero
object and finite products/coproducts are created by the functor K. By the word
“created” we mean that 0• is a zero object also in K(RMod), and, for instance,
(C• ⊕D•, [ιC• ], [ιD• ]) is a categorical coproduct of C• and D• in K(RMod).

Example 9.12. Suppose that C• is a chain complex as the one of Example 9.2,
i.e. such that IdC• is chain homotopic to the zero self-map of C• (it is chain null-
homotopic). Then each chain map out of C• or into C• is chain homotopic to the
zero map. As a result, C• is a zero object in K(RMod).

Unfortunately, K(RMod) is in general not an abelian category: hence, although
considering chain maps up to chain homotopy can have its advantages, it also
comes with a price.

9.2. Chain homotopies and induced maps in homology. Recall that for all
n ∈ Z we have a functor Hn(−) : RCh → RMod. In particular, given a chain map
f : C• → D•, we obtain an R-linear map Hn(f) : Hn(C•) → Hn(D•). How does
Hn(f) change if we replace f by a chain homotopic map g? The following lemma
tells us that nothing changes, and in its proof we will understand how well-designed
the notion of chain homotopy of maps is.

Lemma 9.13. Let f, g : C• → D• be chain homotopic maps. Then Hn(f) =
Hn(g) : Hn(C•)→ Hn(D•).

Proof. Let H : C• → D•+1 be a chain homotopy from f to g. Let [x] ∈ Hn(C•) be
a homology class, represented by a cycle x ∈ Zi(C•). Then Hn(f) : [x] 7→ [(x)fi],
whereas Hn(g) : [x] 7→ [(x)gi]; on the other hand we have the following chain of
equalities in Hn(D•):

[(x)gi]− [(x)fi] = [(x)gi − (x)fi] = [((x)Hi)dDi+1) + ((x)dCi )Hi−1]

= [((x)Hi)dDi+1 + 0] = 0,

where the last equality follows from ((x)Hi)dDi+1 ∈ Bi(D•). It follows that Hn(f)
and Hn(g) coincide. �

Perhaps Lemma 9.13 is the main motivation to consider at all the notion of chain
homotopy equivalence: if we are only interested in the behaviour of a chain map f
in homology, we can perturb f by a chain homotopy without affecting Hn(f).

Notation 9.14. We say that C• is a chain null-homotopic chain complex if IdC•
is chain homotopic to the zero self-chain map of C•.

If C• is chain null-homotopic, then we also have that C• is acyclic. To see this, let
n ∈ Z, and consider the homology group Hn(C•). We have a sequence of equalities
of R-linear self maps of Hn(C•)

IdHn(C•) = Hn(IdC•) = Hn(0) = 0

where the first equality follows from Hn(−) being a functor, the second follows from
Lemma 9.13, and the third follows from Hn(−) being an additive functor. Hence,
the left R-module Hn(C•) has the remarkable property that its identity coincides
with the zero map: this means that Hn(C•) = 0.
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Example 9.15. Let R = Q[x] and consider the chain complex C• ∈ Q[x]Ch

. . . C3 = 0 C2 = Q[x] C1 = Q[x] C0 = Q[x]/(x) C−1 = 0 . . .·x [−]x

The complex is acyclic (it is after all the old good SES Q[x]→ Q[x]→ Q[x]/x). Yet
we can prove that IdC• is not chain null-homotopic. For this, let H = (Hi)i∈Z be
any chain homotopy C• → C•+1. Then H0 : Q[x]/(x)→ Q[x], which is supposed to
be a Q[x]-linear map, must be the zero map. Similarly, H−1 : 0 → Q[x]/(x) is the
zero map. It follows that H0 ◦ dC1 + dC0 ◦H−1 = 0 + 0 is not equal to the identity of
C0 = Q[x]/(x). In a similar way, H1 ◦ dC2 + dC1 ◦ H0 = H1 ◦ dC2 cannot the identity
of C1 = Q[x] (as dC2 is not surjective).

The previous example shows that a chain complex can be acyclic and yet not be
chain null-homotopic. As a spoiler for the future, this essentially happens because
one of the Q[x]-modules occurring, namely Q[x]/(x), is not projective.
A reformulation of Lemma 9.13 is that for each n ∈ Z the functor Hn(−) : RCh→
RMod can be written as a composition of two functors: the functor K : RCh →
K(RMod), followed by a functor HK

n (−) : K(RMod)→ RMod.

9.3. Chain homotopy equivalences. We can think of a chain null-homotopic
chain complex C• as a chain complex that, even if not isomorphic to 0•, is for
many purposes (including the homology computation) equivalent to 0•. We make
this idea of equivalence precise in the following definition.

Definition 9.16. Let C• and D• be chain complexes in RMod. A chain map
f : C• → D• is a chain homotopy equivalence if the morphism

[f ] ∈ HomK(RMod)(C•, D•),

obtained by applying K to f , is an isomorphism in the category K(RMod).

Concretely, this means that there exists a chain map g : D• → C• (representing a
morphism [g] : C• → D•) such that the composite f ◦ g is chain homotopic to the
identity of C• (so that [f ] ◦ [g] = [f ◦ g] = [IdC• ]), and the composite g ◦ f is chain
homotopic to the identity of D• (so that, similarly, [g] ◦ [f ] = [IdD• ], and thus [g]
is an inverse of [f ]).
Even more concretely, f : C• → D• is a chain homotopy equivalence if there exist a
chain map g : D• → C•, a chain homotopy HC : C• → C•+1 and a chain homotopy
HD : D• → D•+1 such that f ◦ g − IdC• = HC ◦ dC + dC ◦ HC and such that
g ◦ f − IdD• = HD ◦ dD + dD ◦ HD.
For instance, a chain complex C• is null-homotopic if and only if the inital map
0• → C• and the terminal map C• → 0• are chain homotopy equivalences.
Note that if f : C• → D• is a chain homotopy equivalence, then [f ] : C• → D• is
an isomorphism in K(RMod), and for all n ∈ Z, applying the functor HK

n (−), we
obtain that also the map Hn(f) = HK

n ([f ]) : Hn(C•)→ Hn(D•) is an isomorphism
of R-modules.

Example 9.17. Consider the following chain map f : C• → D•

. . . C2 = 0 C1 = Z C0 = Z C−1 = 0 . . .

. . . D2 = 0 D1 = 0 D0 = Z/7 D−1 = 0 . . .

f2 f1

·7

f0=[−]7 f−1
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We can compute the homology groups of C• and D•, and find out that the only
non-vanishing homology groups are H0(C•) ∼= H0(D•) ∼= Z/7; moreover the map
H0(f) is an isomorphism, and it follows that f is a quasi-isomorphism, i.e. it
induces isomorphism between all pairs of homology groups.
However f is not a chain homotopy equivalence. To see this, note that every chain
map g : D• → C• vanishes, as in particular every Z-linear map g0 : D0 → C0 must
vanish. But the zero map 0: D• → C• does not induce an isomorphism on H0, and
hence it is not a quasi-isomorphism and even less a chain homotopy equivalence. It
follows that, in K(RMod), there is no isomorphism D• → C•; but then there cannot
be an isomorphism C• → D• either, so [f ] is not an isomorphism in K(RMod), so
f is not a chain homotopy equivalence.

9.4. Mapping cylinder. Let f : C• → D• be an R-linear chain map of left R-chain
complexes. We can define a new left R-chain complex Cyl(f)• as follows:

• we set Cyl(f)i = Ci ⊕ Di ⊕ C̄i−1, where C̄i−1 is isomorphic to Ci−1 as a
left R-module, and we use the notation “C̄” only to distinguish this direct
summand of Cyl(f)i from the equal summand occurring in Cyl(f)i−1;

• we set dCyl
i : Cyl(f)i → Cyl(f)i−1 to be the map with the following restric-

tions:
– on the summand Ci we take the map dCi : Ci → Ci−1;
– on the summand Di we take the map dDi : Di → Di−1;
– on the summand C̄i−1 we take the map sending

x ∈ C̄i−1 7→
(
− x , (x)fi−1 , −(x)dCi−1

)
∈ Ci−1 ⊕Di−1 ⊕ C̄i−2.

The definition of Cyl(f)• may seem awkward, but this chain complex is designed
to have the following properties.

(1) We an inclusion of chain complexes iC : C• ↪→ Cyl(f)•, including Ci as a
summand into Cyl(f)i.

(2) We an inclusion of chain complexes iD : D• ↪→ Cyl(f)•, including Di as
a summand into Cyl(f)i. Composing with f , we obtain a map of chain
complexes f ◦ iD : C• → Cyl(f)•.

(3) We have a chain map ρ : Cyl(f)• → D• defined as follows: ρi : Cyl(f)i → Di

restricts to fi on Ci, restricts to IdDi
on Di, and is the zero map on C̄i−1.

(4) The composition iD ◦ ρ : D• → D• is the identity of D•; as a consequence,
the composition f ◦ iD ◦ ρ is the chain map f .

(5) We have a chain homotopy H : Cyl(f)• → Cyl(f)•+1 defined as follows:
Hi : Cyl(f)i → Cyl(f)i+1 sends Ci → C̄i by the map IdCi

, and is the zero
map on the summands Di and on C̄i−1.

(6) H is a chain homotopy between IdCyl(f)• and ρ ◦ iD. In particular ρ is a
chain homotopy equivalence. In the homotopy category K(RMod we have
[ρ] = [iD]−1, i.e. [ρ] is an isomorphism. Moreover [iC ] ◦ [ρ] = [f ].

From the point of view of the homotopy category K(RMod), D• and Cyl(f)• are
isomorphic objects; from the point of view of RCh, however, there is a big difference:
iC is certainly an injective map C• → Cyl(f)•, whereas f need not be injective. We

can now redefine the mapping cone Cone(f)• as coker(C•
iC
↪→ Cyl(f)•). We obtain

a LES of homology groups

. . . Hn(C•) Hn(Cyl(f)•) Hn(Cone(f)•) Hn−1(C•) . . .
Hn(iC) ∂n
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We can now identify each homology group Hn(Cyl(f)•) with Hn(D•) using the
isomorphism Hn(ρ); we thus get a LES in which the morphisms Hn(f) show up

. . . Hn(C•) Hn(D•) Hn(Cone(f)•) Hn−1(C•) . . .
Hn(f) ∂n

Exercise 9.18. For a chain map f : C• → D•, show the following:

• f is a quasi-isomorphism if and only if Cone(f) is acyclic (use the homology
LES);
• f is a chain homotopy equivalence if and only if Cone(f) is null-homotopic.

9.5. Tensor product of chain complexes. Let C• be a chain complex in ModR,
and let D• be a chain complex in RMod. We would like to define a new chain
complex (C ⊗R D)• in ZMod by combining the tensor products Ci ⊗R Dj . This is
done in two steps.
In the first step we define a double complex E•,•. We set Ei,j = Ci ⊗R Dj . The
differential d′i,j : Ei,j → Ei−1,j is given by the map of abelian groups dCi ⊗R IdDj ,
whereas the differential d′′i,j : Ei,j → Ei,j−1 is given by the map of abelian groups

IdCi
⊗R dDj . You can check that the composition d′ ◦ d′ vanishes, as well as d′′ ◦ d′′;

moreover d′ and d′′ commute. Hence (E•,•, d
′, d′′) is a double complex (a chain

complex in chain complexes in RMod).
Now we would like to convert a double complex of abelian groups into a single chain
complex of abelian groups.

Definition 9.19. Let (E•,•, d
′, d′′) be a double complex in ZMod27. We define the

associated total chain complex, denoted (Tot(E)•, d), as follows:

• Tot(E)n :=
⊕

i+j=nEi,j ; denote by ιi,j : Ei,j → Tot(E)n the canonical
inclusion of the summand Ei,j , for all i+ j = n;
• the differential dn : Tot(E)n → Tot(E)n−1 is defined on the summand
Ei,n−i of Tot(E)n as ιi−1,n−i ◦ d′i,n−i + (−1)iιi,n−i−1 ◦ d′′i,n−i.

Informally, the differential of Tot(E)•, restricted to a summand Ei,j in degree i+j,
is written d′i,j + (−1)id′′i,j . The sign (−1)i is there to ensure that d ◦ d = 0, i.e.
we have indeed defined a chain complex (and not just a sequence of interrelated
modules).
We can apply the previous construction to the double complex constructed above.
The result is a chain complex in abelian groups (C ⊗R D)•; for x ⊗ y ∈ Ci ⊗R Di

we can write the differential d(x⊗ y) as

d(x⊗ y) = d′(x⊗ y) + (−1)id′′(x⊗ y) = (dCi (x))⊗ y + (−1)ix⊗ ((y)dDj );

a formula like the previous is called a “Leibniz rule”, as it is similar to the for-
mula, apprently due to Leibniz, expressing the derivative of a product of functions
f, g : R→ R as d

dx (f(x)g(x)) =
(
d
dxf(x)

)
g(x)+f(x)

(
d
dxg(x)

)
. In our case the prod-

uct is replaced by the tensor product, and the derivative by the chain differential.
Moreover there is an additional sign (−1)i.

9.6. Hom of chain complexes. There is a similar construction taking as input
two chain complexes C• and D• in RCh and giving as output a chain complex in
abelian groups HomR(C,D)•.

27Or in another abelian category admitting infinite direct sums...
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The first step creates a double complex E•,• of abelian groups. We set Ei,j =
HomR(C−i, Dj). The differential d′i,j : Ei,j → Ei−1,j is given by the map of abelian

groups HomR(dC−i+1), Dj) : HomR(C−i, Dj) → HomR(C−i+1, Dj) obtained apply-

ing the contravariant functor HomR(−, Dj) to the differential dC−i+1. Similarly, the

differential d′′i,j : Ei,j → Ei,j−1 is given by the map of abelian groups HomR(Ci, d
D
j ).

The situation is a bit more complicated than with the tensor product, as the func-
tor HomR(−, Dj) is contravariant, so it transforms chain complexes into cochain
complexes; in order to get chain complexes again, we have to mirror the indices.
Now we use the following alternative construction to convert a double complex into
a single chain complex.

Definition 9.20. Let (E•,•, d
′, d′′) be a double complex in ZMod28. We define the

associated alternative total chain complex, denoted (T̂ot(E)•, d), as follows:

• T̂ot(E)n :=
∏
i+j=nEi,j ; denote by πi,j : T̂ot(E)n → Ei,j the canonical

projection on the factor Ei,j , for all i+ j = n;

• the differential dn : T̂ot(E)n → T̂ot(E)n−1 is defined by declaring its (i, j)-
coordinates, for all i+ j = n− 1: i.e., we determine a map dn with target∏
i+j=n−1Ei,j by declaring how its postcompositions πi,j ◦dn, with targets

Ei,j , behave, for each i+ j = n− 1. We set29

πi,j ◦ dn = d′i+1,j ◦ πi+1,j + (−1)id′′i,j+1 ◦ πi,j+1.

As you see, Definition 9.20 is analogue to Definition 9.19, but it uses products
instead of coproducts; therefore we have to use the universal property of product
also to define the new differential, instead of the universal property of coproduct.
If we apply the construction to the double complex constructed above, we obtain a
chain complex in abelian groups HomR(C,D)•. It is instructive to do the following
exercise.

Exercise 9.21. Prove the following.

• A chain in HomR(C,D)0 is the datum of a family f = (fi)i∈Z of R-linear
maps fi : Ci → Di.
• A family f = (fi)i∈Z of R-linear maps fi : Ci → Di is a cycle (it lies in
Z0(HomR(C,D)•)) if and only if it is a chain map f : C• → D•.
• A chain in HomR(C,D)0 is a chain homotopy H : C• → D•+1, i.e. the

datum of a family H = (Hi)i∈Z of R-linear maps Hi : Ci → Di+1.
• Saying that two chain maps f, g : C• → D• are connected by a chain ho-

motopy H : C• → D•+1 is equivalent to saying that d(H) = g − f , i.e. the
two cycles f and g differ by a boundary in B(HomR(C,D)•)0.
• Conclude: H0(HomR(C,D)•) is isomorphic to HomK(RMod)(C•, D•).

Example 9.22. Suppose that D• = θ0(R), i.e. D0 = R, all other Di = 0, and all
differentials of D• are zero. Then Hom(C,D)• is isomorphic to the chain complex

. . .HomR(C−(i+1), R) HomR(C−i, R) HomR(C−(i−1), R) HomR(C−(i−2), R) . . . ,

28Or in another abelian category admitting infinite products...
29Some of you pointed out that the coefficient “(−1)i” should be replaced by “(−1)n” in the

following formula. I think that in both cases one obtains a chain complex (i.e. the double iteration
of a differential is the zero map); moreover I think that the two chain complexes obtained (by

putting “(−1)i” or “(−1)n” in the formula) should be isomorphic chain complexes.
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which is the mirror of the cochain complex obtained from C• by applying the
contravariant, additive functor HomR(−, R). Compare with the second part of
Example 8.20.

10. Projective resolutions

We fix a ring R and focus on the category RMod of left R-modules. We will focus
in the entire section for simplicity on projective resolutions; there is a dual notion
of injective resolution, and we will discuss it quickly at the end.

10.1. Finitely presented modules. We start this section with a discussion about
finitely presented R-modules.

Definition 10.1. Recall Subsection 2.3. A left R-module M is finitely generated
if there is a finite set I0 and a surjective R-linear map g0

⊕
i∈I R → M , i.e. there

is an exact sequence of left R-modules⊕
i∈I0 R M 0.

g0

Equivalently, M is finitely generated if there is a finite subset S ⊂ M such that
SpanR(S) = M .
We say that M is finitely presented if there are finite sets I0 and I1 and an exact
sequence of left R-modules⊕

i∈I1 R
⊕

i∈I0 R M 0.
g1 g0

Equivalently, M is finitely presented if there exists a finite set I0 and a surjective
R-linear map g0 :

⊕
i∈I0 R→M such that ker(g0) is a finitely generated R-module.

Clearly, if M is finitely presented, then it is also finitely generated30. We would like
now to show that if M is finitely generated, we can use any finite generating set of
M to determine whether M is also finitely presented.

Proposition 10.2. Let M be a finitely generated R-module, let I0 and I ′0 be finite
sets, and let g0 :

⊕
i∈I0 R→M and g′0 :

⊕
i∈I′0

R→M be surjective R-linear maps.

Then ker(g0) is finitely generated over R if and only if ker(g′0) is finitely generated
over R.

Proof. By symmetry, it suffices to assume that ker(g0) is finitely generated over R
and prove that ker(g′0) is finitely generated over R. We shorten our notation by
letting F0 =

⊕
i∈I0 R and F ′0 =

⊕
i∈I′0

R. We also fix a finite set I1 and a surjective

R-linear map g1 : F1 :=
⊕

i∈I1 R → ker(g0), witnessing that ker(g0) is a finitely
generated R-module.
We obtain a diagram with exact rows

F ′0 M 0

F1 F0 M 0

g′0

g1 g0

30As Kaif showed to you, if M is projective and finitely generated, then it is also finitely
presented. We will not use this fact in the present discussion.
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Now we can use that F0 is a free R-module, and in particular is projective, together
with the fact that g′0 is surjective: there exists an R-linear map h : F0 → F ′0 such
that g0 = h ◦ g′0 : F0 →M . Similarly, we can find an R-linear map l : F ′0 → F0 such
that g′0 = l ◦ g0. We obtain a new diagram

F ′0 M 0

F1 F0 M 0.

g′0

l

g1 g0

h

Selecting either h or l, we obtain a commutative square in the last diagram; but h
and l are not inverse of each other (so we don’t have a “commutative bigon”).
In particular, the map h restricts to a map ker(g0) → ker(g′0), and the map l
restricts to a map ker(g′0)→ ker(g0).
Consider now the map IdF ′0 − l ◦ h : F ′0 → F ′0: we claim that it takes values in the
submodule ker(g′0). Indeed, for all x ∈ F ′0, we can compute

((x)(IdF ′0 − l ◦ h))g′0 = (x)g′0 − (x)l ◦ h ◦ g′0 = (x)g′0 − (x)l ◦ g0 = (x)g′0 − (x)g′0 = 0.

We can now define a map g′1 : F1 ⊕ F ′0 → ker(g′0) by taking the map g1 ◦ h on the
summand F1, and by taking the map IdF ′0− l◦h on the summand F ′0. And now the
miracle occurs: the map g′1 hits ker(g′0) surjectively! To see this, let y ∈ ker(g′0).
Then (y)l ∈ ker(g0), so there exists z ∈ F1 with (z)g1 = (y)l. We can then write

y = (y − (y)l ◦ h) + (y)l ◦ h = (y)(IdF ′0 − l ◦ h) + (z)g1 ◦ h = (y, z)g′1.

Since F1 ⊕ F ′0 is a finitely generated free R-module, we conclude that ker(g′0) is
finitely generated. The proof is completed, but let us also extend the diagram
above as follows, where rows are exact, and some squares and triangles (which
ones?) are commutative

F1 ⊕ F ′0 F ′0 M 0

F1 F0 M 0.

g′1

g′1◦l̃

g′0

l
l̃

ιF1

g1 g0

h

The map l̃ : F ′0 → F1 is a choice of lift of l : F0 → ker(g0) along the surjective map
g1 : F1 → ker(g0): this lift exists again because F ′0 is projective. In fact, we could

have first fixed such a lift, and then have taken z = (y)l̃ in the argument before. �

Example 10.3. Let R =
∏
i∈N Q be the ring from the first multiple choice test, and

consider M = R/
⊕

i∈N Q. Then M is finitely generated, in fact it is 1-generated;
but the kernel of the canonical, surjective, R-linear map R → M is

⊕
i∈N Q ⊂ R,

which is not finitely generated.
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Using Proposition 10.2, the conclusion is that M is not finitely presented, not even
if we replace R→M by another surjective map F0 →M from a finitely generated
free R-module.

The discussion so far is hopefully going to make you think “Oh, but this is so similar
to something we just saw before!” during the rest of the section.

10.2. Definition of projective resolution. Let M be an R-module. The first
step in presenting M is to choose a surjective R-linear map g0 : F0 → M from a
free R-module F0. The second step is to choose a surjective R-linear map g1 : F1 →
ker(g0) with source another free R-module F1: this is however precisely the first
step of presenting the module ker(g0)!
We can now complete the presentation of ker(g0), by choosing a surjective map
g2 : F2 → ker(g1) with source yet a new free module F2: and again, we can continue
in this fashon forever, obtaining an exact sequence of R-modules

. . . F3 F2 F1 F0 M 0 . . .
g3 g2 g1 g0

We can now do the following somewhat artificial thing: remove M from the above
sequence, and put a 0 instead. This has the somewhat sad effect of breaking the
exactness and giving us a chain complex F• reading

. . . F3 F2 F1 F0 0 . . .
g3 g2 g1 g0

The good news is that now M can be recovered as H0(F•), and, most importantly,
all other homology groups Hi(F•) vanish.
In some sense, removing M is a natural thing to do: also when dealing with pre-
senting M , we wanted just to find a map g1 : F1 → F0 and then say “M can be
recovered as the cokernel of this map”. In particular, M should be the output of
the presentation, not one of the ingredients! Similarly, we are now making a “gen-
eralised presentation” of M , keeping track of all successive kernels that arise at
each step: the result is the chain complex F•, which is a “generalised presentation”
(a.k.a. free resolution) of M .

Definition 10.4. Let M be a left R-module. A projective resolution of M is a
couple (P•, ε), where P• is a chain complex in left R-modules, and ε : P0 → M is
an R-linear map, called augmentation, such that the following hold:

• for all i ∈ Z the R-module Pi is projective;
• “P• is concentrated in degrees ≥ 0”, i.e. Pi = 0 for all i < 0;
• for all i 6= 0 the homology group Hi(P•) vanishes;
• the composition dP1 ◦ ε : P1 → M is the zero map, and the map H0(P•) =

coker(dP1 )→M induced by ε is an R-linear isomorphism.

A projective resolution (P•, f) has finite length ` ≥ 0 if P` 6= 0 and Pi = 0 for all
i > `.

In the previous definition the word “projective” is emphasized: if you replace
this word by the word “flat” or “free”, you obtain the notions of flat and free
resolutions of an R-module M . There is also a notion of “injective resolution”,
but it is somewhat different and we will see it later; replacting “projective” by
“injective” in Definition 10.4 would lead to a quite useless definition instead.
The length of a resolution should be thought of as a measure of how complicated
it is: the shorter the length, the happier we are.
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It is somehow common also to consider ε as a surjective map P0 → M such that
P1 → P0 →M → 0 is exact, and write a projective resolution as an exact sequence

. . . P3 P2 P1 P0 M 0 . . . ;
dP3 dP2 dP1 ε

The problem with this is that it now seems that M lives in degree -1, whereas it
would be more natural to have M in degree 0. The best solution is to consider ε as
giving rise to a chain map

. . . P3 P2 P1 P0 0 . . .

. . . 0 0 0 M 0 . . . ,

dP3 dP2 dP1

ε

and requiring that this chain map is a quasi-isomorphism P• → θ0(M)• (see Ex-
ample 9.11).

Example 10.5. Let M be a projective R-module. Then a projective resolution of
M is the pair (θ0(M)•, IdM ), where θ0(M)• ∈ RCh is the chain complex with M
in degree 0 and zero in all other degrees:

· · · → 0→ 0→M → 0 . . . .

with augmentation IdM : M → M . We have that H0(θ0(M)•) is canonically iso-
morphic to M . This resolution has length 0.

Example 10.6. The chain complex from Example 8.10 is a free resolution of the
zero module 0 over the ring Z. Clearly, also 0• is a free resolution, and in fact it is
a simpler one.

Example 10.7. Let R = Z/6 and M = Z/3. We saw that M is projective over
R, so a projective resolution of M is given by (θ0(M)•, IdM ) as in Example 10.5.
However this is not a free resolution of M .
A free resolution of M is, for instance, the following:

. . . P4 = Z/6 P3 = Z/6 P2 = Z/6 P1 = Z/6 P0 = Z/6 0 . . . ,·2 ·3 ·2 ·3

together with the augmentation Z/6 → Z/3 given by [n]6 7→ [n]3. Note that the
previous is a resolution of infinite length: in fact it is a good exercise to prove that
there is no resolution of Z/3 over Z/6 whose length is finite and whose terms are
finitely generated, free Z/6-modules.31

The previous example shows that for concrete computations it can be convenient
to use generic projective resolutions, instead of only free ones. The fact that RMod
has enough projectives implies that each R-module M admits some projective res-
olution.

Example 10.8. Let R = F be a field. Then every F-vector space is already
projective, so it admits a projective resolution of length 0.

31Hint: multiplying and dividing powers of 6, one never gets the number 3...
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Example 10.9. Let R be a PID, and let M be any R-module. Then we can
fix an R-linear surjection g0 : F0 → M with some free R-module as source. Then
by Theorem 5.10 the R-module ker(g0) ⊂ F0 is free, as it is a submodule of a
free R-module: we can call it F1, define d1 : F1 → F0 to be the inclusion, define
Fi = 0 for all i 6= 0, 1 and define all differentials di : Fi → Fi−1 to be the zero map,
for i 6= 1. We obtain in this way a free resolution (F•, ḡ0) of length 1 of M , where
ḡ0 : H0(F•) = coker(d1)→M is the isomorphism induced by g1. As a very concrete
example, for k ≥ 2, the chain complex

. . . P2 = 0 P1 = Z P0 = Z 0 . . .·k

together with the augmentation [−]k : Z→ Z/k, gives a length-1 projective resolu-
tion of Z/k over Z.

The previous example implies, for instance, that also Q has a projective (in fact
free) resolution over Z of length 1; but writing down explicitly such a resolution
seems to be quite a mess!

Example 10.10. Let p be a prime number and let R = Z/p2. Let M = Z/p, and
use the map of rings R→M to make M into an R-module. A projective (in fact,
free) resolution of M is the following chain complex P•

. . . P4 = Z/p2 P3 = Z/p2 P2 = Z/p2 P1 = Z/p2 P0 = Z/p2 0 . . . ,
·p ·p ·p ·p

together with the augmentation Z/p2 → Z/p given by [n]p2 7→ [n]p. Note that this
resolution has infinite length; in fact it can be proved (and hopefully we will do it
at some point!) that in this case M admits no projective resolution over R of finite
length.
Note that the same M = Z/p, when considered as a Z-module, would admit a
projective resolution of length 1 over Z.

Example 10.11. Let R = F[x]/(xn) for some field F and some n ≥ 2, and let
M = F[x]/(xk) for some 1 ≤ k ≤ n− 1. Then M admits a projective (in fact free)
resolution over F[x]/(xn) given by

. . . P6 = F[x]/(xn) P5 = F[x]/(xn)

P4 = F[x]/(xn) P3 = F[x]/(xn)

P2 = F[x]/(xn) P1 = F[x]/(xn)

P0 = F[x]/(xn) 0 . . . ,

·xn−k

·xk

·xn−k

·xk

·xn−k

·xk

together with the augmentation F[x]/(xn)) → F[x]/(xk) given by [f(x)]xn 7→
[f(x)]xk . Compare with Example 10.10 in the case n = 2 and k = 1.
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Example 10.12. Let R = Z[x]/(xn−1) for some n ≥ 2, and let M = Z[x]/(x−1) ∼=
Z. Then M admits a projective (in fact free) resolution over R given by

. . . P6 = Z[x]/(xn − 1) P5 = Z[x]/(xn − 1)

P4 = Z[x]/(xn − 1) P3 = Z[x]/(xn − 1)

P2 = Z[x]/(xn − 1) P1 = Z[x]/(xn − 1)

P0 = Z[x]/(xn − 1) 0 . . . ,

·(1+x+···+xn−1)

·(x−1)

·(1+x+···+xn−1)

·(x−1)

·(1+x+···+xn−1)

·(x−1)

together with the augmentation Z[x]/(xn−1))→ Z[x]/(x−1) given by [f(x)]xn−1 7→
[f(x)]x−1. Compare with Examples 10.10 and 10.11.

The previous example is important because Z[x]/(xn − 1) is isomorphic to the
group ring Z[Cn], where Cn is the finite cyclic group on n elements.32. The group
homology of Cn is defined precisely using this ring and the corresponding Z[Cn]-
module Z, as we will (hopefully) see!

10.3. Projective resolutions and R-linear maps. Suppose that (P•, ε) is a
projective resolution of a left R-module M , and (Q•, υ) is a projective resolution of
another left R-module N . Suppose moreover that f : M → N is an R-linear map.
Since we can exhibit M as H0(P•) and N as H0(N•), it would be great to exhibit

f as H0(f̃), for some chain map f̃ : P• → Q•. In this subsection we prove that such

a f̃ exists. We start by writing a diagram with exact rows

. . . P3 P2 P1 P0 M 0

. . . Q3 Q2 Q1 Q0 N 0.

dP3 dP2 dP1 ε

f

dQ3 dQ2 dQ1 υ

And now be ready, because we will use the hypothesis that our modules Pi are
projective! Since P0 is projective, and since υ : Q0 → N is surjective, we can
find an R-linear map f̃0 : P0 → Q0 such that the square in the following diagram
commutes

. . . P3 P2 P1 P0 M 0

. . . Q3 Q2 Q1 Q0 N 0.

dP3 dP2 dP1 ε

f̃0 f

dQ3 dQ2 dQ1 υ

The map dQ1 : Q1 → Q0 is not surjective, but it is surjective when considered as

a map Q1 → ker(υ). On the other hand, the map dP1 ◦ f̃0 : P1 → Q0 has image
contained in ker(υ): indeed we have an equality of maps P1 →M

dP1 ◦ f̃0 ◦ υ = dP1 ◦ ε ◦ f = 0 ◦ f = 0.

32Clearly Cn is just another name of Z/n, but it would be somehow ugly to write Z[Z/k]...
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We can then use that P1 is projective and find an R-linear map f̃1 : P1 → Q1 such
that both squares in the following diagram commute

. . . P3 P2 P1 P0 M 0

. . . Q3 Q2 Q1 Q0 N 0.

dP3 dP2 dP1

f̃1

ε

f̃0 f

dQ3 dQ2 dQ1 υ

Now the projective module P2 enters the scene: again one can check that the

composition dP2 ◦ f̃2 : P2 → Q1 has image in ker(dQ1 ), and there is a surjective map

dQ2 : Q2 → ker(dQ1 ): nothing is better to ensure the existence of an R-linear map

f̃2 : P2 → Q2 such that all three squares commute

. . . P3 P2 P1 P0 M 0

. . . Q3 Q2 Q1 Q0 N 0.

dP3 dP2

f̃2

dP1

f̃1

ε

f̃0 f

dQ3 dQ2 dQ1 υ

One can continue forever in this way. Using the axiom of choice, if you like, one
finds a chain map f̃ = (f̃i)i∈Z: strictly speaking, one also has to set f̃i = 0 for
i < 0.

Exercise 10.13. Check that H0(f̃) coincides with f , up to identifying H0(P•) with
M by the map induced by ε, and H0(Q•) with N by the map induced by υ.

That was great! But at each step we have chosen a map f̃i. The amazing part is
still to come: another sequence of choices would have produced another chain map
f̌ : P• → Q•, but then f̃ and f̌ are automatically chain homotopy equivalent. Let’s
prove this fact. We start with a diagram with exact rows

. . . P3 P2 P1 P0 M 0

. . . Q3 Q2 Q1 Q0 N 0.

dP3

f̃3f̌3

dP2

f̃2f̌2

dP1

f̃1f̌1

ε

f̃0f̌0 f

dQ3 dQ2 dQ1
υ

Consider the map (f̌0 − f̃0) : P0 → Q0: it lands inside ker(υ), indeed we have an
sequence of equalities of maps P0 →M

(f̌0 − f̃0) ◦ υ = f̌0 ◦ υ − f̃0 ◦ υ = ε− ε = 0.

Again, ker(υ) is hit surjectively by the map dQ1 : Q1 → ker(υ); we can thus define

an R-linear map H0 : P0 → Q1 such that (f̌0 − f̃0) = H0 ◦ dQ1 : P0 → Q0. We add
H0 to our diagram, but pay attention, because only some of the squares (and in
fact, none of the triangles) are known to commute

. . . P3 P2 P1 P0 M 0

. . . Q3 Q2 Q1 Q0 N 0.

dP3

f̃3f̌3

dP2

f̃2f̌2

dP1

f̃1f̌1
H0

ε

f̃0f̌0 f

dQ3 dQ2 dQ1
υ

Now it is the turn of P1: we consider the map (f̌1 − f̃1 − dP1 ◦ H0) : P1 → Q1, and

again some magic happens: this map lands inside ker(dQ1 )! To see this, we have a
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sequence of equalities of maps P1 → Q0

(f̌1 − f̃1 − dP1 ◦ H0) ◦ dQ1 = (f̌1 − f̃1) ◦ dQ1 − dP1 ◦ H0 ◦ dQ1
= (f̌1 − f̃1) ◦ dQ1 − dP1 ◦ (f̌0 − f̃0) = 0,

where the last step uses that f̌− f̃ is a chain map. Again, we can use the surjection

dQ2 : Q2 → ker(dQ1 ) and get an R-linear map H1 : P1 → Q2 such that (f̌1− f̃1−dP1 ◦
H0) = H1 ◦ dQ2 : P1 → Q1. Reassembling, we obtain the equality

f̌1 − f̃1 = dP1 ◦ H0 +H1 ◦ dQ2 .

It starts looking like something familiar, right? We can continue in the same way
constructing, one after the other, R-linear maps Hi : Pi → Qi+1, obtaining a dia-
gram as follows:

. . . P3 P2 P1 P0 M 0

. . . Q3 Q2 Q1 Q0 N 0.

dP3

f̃3f̌3
H2

dP2

f̃2f̌2
H1

dP1

f̃1f̌1
H0

ε

f̃0f̌0 f

dQ3 dQ2 dQ1
υ

We can also set Hi to be the zero map for i < 0. The result is a chain homotopy
H : P• → Q•+1 between f̃ and f̌ .

10.4. Consequences of the work done. So far we have seen three important
things:

• each left R-module M admits some projective resolution P•;
• each R-linear map f : M → N admits some lift f̃ as a chain map between

two fixed projective resolutions P• of M and Q• of N ;
• the lift f̃ is unique up to chain homotopy.

We use these observations to define a “projective resolution functor”, with source

RMod, and with target... not quite RCh, but the slightly smaller categoryK(RMod).

Definition 10.14. We define a functor P : RMod → K(RMod) and a natural
transformation [εP] : P⇒ K ◦ θ0 as follows.33

First, we use a “powerful enough version of the axiom of choice” and choose for
every left R-module M a projective resolution P(M)• = (P(M)•, ε

P(M)) of M .
The behaviour of the functor on objects is thus defined, and also the natural trans-
formation, which is associates with every M ∈ RMod the chain homotopy class of

the chain map εPM : P(M)• → θ0(M)•.

Given an R-linear map f : M → N , we define P(f) to be [f̃ ] : P(M)• → P(N)•
for any choice of chain map f̃ : P(M)• → P(N)• constructed as above. The above

argument shows precisely that [f̃ ] only depends on f (and on the objects P(M)•
and P(N)•, which have already been fixed), and it also shows that [εP] is indeed a
natural transformation.

33I replaced the old notation with this new one, where “P” recalls the first letter of the word

“projective” and later “I” recalls the first letter of the word “injective”. The old notation “L”
and “R”, inspired by the words “left” and “right”, can lead to confusion when considering left

and right derived functors in the covariant and contravariant case.
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About the “powerful enough version of the axiom of choice”: strictly speaking, this
is a true issue, since the objects of RMod form a class, and not a set. There are
two ways out of this problem:

• either we agree to work not with all left R-modules, but only those whose
underlying set is a subset of some big-enough-for-our-purposes set S , putting
also a bound on the cardinality of allowed R-modules, in such a way that
we can still study efficiently the allowed R-modules;
• or we define P(M) to be the brute-force free resolution: we define P(M)0 =⊕

m∈M R; we define εPM : P(M)0 → M to be the map adjoint to the
identification of sets M = M ; we define P(M)1 =

⊕
m∈ker(εPM )R; we

define dP,M1 : P(M)1 → ker(εPM ) ⊂ P(M)0 as the map adjoint to the

identification of sets ker(εPM ) = ker(εPM ); and for i ≥ 2 we define recur-

sively P(M)i to be the free R-module on the set ker(dP,Mi−1 ), and we define

dP,M1 : P(M)i → ker(dP,Mi−1 ) ⊂ P(M)i−1 as the map adjoint to the identifi-

cation of sets ker(dP,Mi−1 ) = ker(dP,Mi−1 ). This allows us to avoid completely
the axiom of choice.

Example 10.15. Let us prove that the functor P is additive. Let therefore
f, g : M → N be two R-linear maps, and let f̃ , g̃ : P(M)• → P(N)• be R-linear

chain maps lifting f, g, constructed as above. Then f̃ + g̃ is a good example of a
chain map P(M)• → P(N)• lifting f + g; we conclude that P(f + g) = [f̃ + g̃] =

[f̃ ] + [g̃] = P(f) + P(g).

Exercise 10.16. In Definition 10.14 a choice was made: for every object M ∈
RMod, a projective resolution of M was chosen. Suppose now that someone else
comes about and gives you another assignment M 7→ (P′(M)•, (ε

P)′) of a projective
resolution for each R-module M ; then you can use these data to construct a new
functor P′ with a natural transformation (ε′)P.

• construct for all M a chain homotopy equivalence ĨdM : P(M)• → P′(M)•
by lifting IdM ;
• prove that the collection of maps [IdM ] for M ∈ RMod assemble into a

natural equivalence of functors P⇒ P′.

We note that the functor P does not “need” the entire category K(RMod): after
all only some of the objects are used, namely those chain complexes of projective
modules that are concentrated in non-negative degrees and have vanishing Hi for
i > 0. We will restrict our category K(RMod) to a slightly bigger category than
required, which is convenient for many applications.

Definition 10.17. We denote by D+(RMod) the full subcategory of K(RMod)
spanned by objects of the form (P•, d

P ) such that:

• each Pi is a projective R-module;
• there is N > 0 such that Pi = 0 for all i < −N (we say that P• is bounded

below).

The category D+(RMod) is known as the bounded below derived category of (the
abelian category) RMod.

Why do we require “bounded below” instead of the condition that we actually are
using, namely “Pi = 0 for i < 0”? In simple words: the shift functors Σk : RCh→
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RCh induce shift functors Σk : K(RMod)→ K(RMod), and we are happier if these
functors are available also on our subcategory D+(RMod), even for k negative.
Why do we allow chain complexes P• having possibly several non-trivial homology
R-modules? The construction seem only to need those chain complexes with only
H0 (possibly) non-vanishing... In simple words: we are happier if for each mor-
phism [f ] : P• → Q• in D+(RMod), for each representative f of [f ] the mapping
cone Cone(f) is still an object in D+(RMod). You can easily see, using homology
LES, that allowing mapping cones quickly gives rise to chain complexes of projec-
tive modules which are bounded below, but have several non-vanishing homology
groups.
These are oversimplified explanations! If you want more, continue studying homo-
logical algebra in the future.

10.5. A glimpse into injective resolutions. One can dually define an injective
resolution of an R-module M to be a chain complex (I•) concentrated in degrees
≤ 0, together with a quasi-isomorphism η from θ0(M)•:

. . . 0 M 0 0 0 . . . ,

. . . 0 I0 I−1 I−2 I−3 . . .

η

dI0 dI−1 dI−2 dI−3

Since, if one has to choose, one usually prefers indices ≥ 0 rather than indices ≤ 0,
it is common to write an injective resolution as a cochain complex

. . . 0 M 0 0 0 . . . ,

. . . 0 I0 I1 I2 I3 . . .

η

δ0I δ1I δ2I δ3I

An injective resolution of M can be constructed using that RMod has enough
injectives: one fixes an injection η : M ↪→ I0 into some injective R-module I0; one
then injects coker(η) into a new injective R-module I1, and calls δ0

I the composite
I0 → coker(η) ↪→ I1; one then injects coker(δ0

I ) into a new injective R-module I2,
and calls δ1

I the composite I1 → coker(δ0
I ) ↪→ I2; and so on.

An R-linear map f : M → N gives rise to a well-defined cochain homotopy class of
cochain maps f̃ between any fixed injective resolutions of M and N : the proof of
this is the same as in the projective case, but with all arrows reversed.
What is a cochain homotopy? Given cochain complexes C• and D•, a cochain
homotopy H : C• → D•−1 is a sequence of R-linear maps (Hi)i∈Z; for two cochain
maps f, g : C• → D• we say that H is a cochain homotopy from f to g if g − f =
δC ◦H+H◦ δD. As you see, under interpreting C• as C−•, this is not really a new
definition.
As a result, one can also define an “injective resolution functor” I : RMod →
K(RMod), assigning to each R-module an injective resolution of it. This functor
comes equipped with a natural transformation [ηI] : K ◦ θ0 ⇒ I.
Finally, one can define a bounded above derived category associated with the abelian
category RMod as the full subcategory of K(RMod) on objects that are bounded
above chain complexes of injective R-modules.
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10.6. Left derived functors, covariant case. Let F : RMod → SMod be an
additive functor34. We already saw that F need not be exact. We however use
F to define new functors RMod → SMod, which are supposed to encapsulate, all
together, how much F fails from being exact.

Definition 10.18. Let n ∈ Z. We define the additive functor LnF : RMod →
SMod as the composite of the additive functors

RMod K(RMod) K(SMod) SMod.
P K(F ) HK

n (−)

Wait a moment: we have just seen the additive functor P : RMod → K(RMod)
(landing actually in D+(RMod), but never mind for now); last time we saw how the
functors Hn(−) : RCh → RMod factor through the homotopy category K(RMod),
giving rise to (additive) functors HK

n (−) : K(RMod)→ RMod; but what is “K(F )”
now supposed to be?
We have already noticed that if F is an additive functor, then it sends chain com-
plexes to chain complexes; since F sends commuting squares to commuting squares,
then F also sends chain maps to chain maps. So we have an induced functor
F : RCh→ SCh.
Now comes the new remark. If f, g : C• → D• are chain maps and H : C• → D•+1

is a chain homotopy from f to g, then we have, for all i ∈ Z, the equality of maps
in RMod

gi − fi = dCi ◦ Hi−1 +Hi ◦ dDi+1 : Ci → Di.

Applying F we obtain the equality of maps in SMod

F (gi)− F (fi) = F (dCi ) ◦ F (cHi−1) + F (Hi) ◦ F (dDi+1) : F (Ci)→ F (Di).

But this really means that F (H) is a chain homotopy from F (f) to F (g), which
are chain maps between the chain complexes (F (C•), F (dC)) → (F (D•), F (dD)).
The result is that an additive functor F maps chain homotopic chain maps to chain
homotopic chain maps, and thus induces a functor K(F ) : K(RMod)→ K(SMod).

Example 10.19. For n < 0 the functor LnF is the zero functor: indeed for all
R-module M we have that P(M)• is concentrated in non-negative degrees, hence
the same holds for F (P(M)•) (which is the same as the object K(F )(P(M)•)).

Example 10.20. Let M be a projective R-module. Then θ0(M)• is a projective
resolution of M , and we can suppose by Exercise 10.16 that P(M)• = θ0(M)• is
just M concentrated in degree 0. Applying F we obtain θ0(F (M))•, i.e. F (M)
concentrated in degree 0. Applying HK

n (−) we obtain either F (M) (if n = 0), or 0
(if n 6= 0).
That is, LnF (M) = 0 for n 6= 0, and L0F (M) ∼= F (M).

Example 10.21. Let F be an exact functor. An exact functor has the following
property: if C• is a chain complex, then F (C•) is also a chain complex (so far
F additive would suffice), and moreover Hn(F (C•)) is canonically isomorphic to
F (Hn(C•)). In fact F also sends kernels to kernels, images to images, cokernels to
cokernels...

34You can replace the target by any abelian category, and the source by any abelian category
with enough projectives



HOMALG 2021 87

Now we have, for all n ∈ Z,

LnF (M) = HK
n (K(F )(P(M)•)) ∼= Hn(F (P(M)•))

∼= F (Hn(P(M)•)) ∼= F (Hn(θ0(M)•)),

and the last term is isomorphic to M for n = 0, and vanishes for n 6= 0.

Example 10.22. Suppose that F : RMod → SMod is right exact. Then for all
M ∈ RMod the sequence

P(M)1
d
P(M)
1→ P(M)0

εPM→ M → 0

is exact. Applying F we obtain that the sequence

F (P(M)1)
F (d

P(M)
1 )
→ F (P(M)0)

F (εPM )
→ F (M)→ 0

is also exact. Removing F (M), we obtain the last chunk of the complex F (P(M)•) =
K(F )(P(M)•), reading

F (P(M)1)
F (d

P(M)
1 )
→ F (P(M)0)→ 0

and we can compute L0F (M) ∼= coker(F (d
P(M)
1 )) ∼= F (M).

Nice! The functor L0F just coincides with the old functor F ! The functors LnF
for n > 0 will then measure how much F fails from being left exact.

The previous example is the reason why, usually, one defines the left derived functors
LnF only under the additional assumption that F is right exact: in principle one
can give the definition without this extra assumption, but in practice, if F is not
right exact, the sequence of functors L0F,L1F, . . . does not seem to be strongly
related to the original functor F .

10.7. Right derived functors, covariant case. In an analogous way one can
define right derived functor, by using injective resolution instead of projective res-
olutions. Let F : RMod→ SMod be an additive functor.

Definition 10.23. Let n ∈ Z. We define the additive functor RnF : RMod →
SMod as the composite of the additive functors

RMod K(RMod) K(SMod) SMod.I K(F ) HK
n (−)

We also use the notation RnF = R−nF , which is very useful when working in
cohomological notation.

The only difference is that we now use I, i.e. the functor given by injective resolu-
tions, instead of P. The first consequence is that RnF vanishes for n > 0 (whereas
LnF vanishes for n < 0): for this reason one usually writes R−nF for RnF .
Again, we have the following:

• if M is injective, then R0F (M) ∼= F (M) and RnF (M) = 0 for all n 6= 0;
• if F is exact, then R0F is naturally isomorphic to F , and RnF is the zero

functor for all n 6= 0;
• if F is left exact, then R0F is naturally isomorphic to F .

We will deal after Christmas with left and right derived contravariant functors (and
it will be fun to distinguish what is left from what is right).
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11. Derived contravariant functors, Tor and Ext

We saw how to define, for an additive functor F : RMod→ SMod and for all n ∈ Z,
the two additive functors LnF and RnF : RMod→ SMod. There were mainly three
ideas involved.

• An additive functor F : RMod → SMod induces a functor FCh : RCh →
SCh, sending the chain complex C• of left R-modules to the chain com-
plex F (C•) of left S-modules, and sending the chain map f : C• → D•,
represented schematically by

. . . Ci+1 Ci Ci−1 Ci−2 . . .

. . . Di+1 Di Di−1 Di−2 . . .

dCi+1

fi+1

dCi

fi

dCi−1

fi−1 fi−2

dDi+1 dDi dDi−1

to the chain map F (f) : F (C•)→ F (D•), represented schematically by

. . . F (Ci+1) F (Ci) F (Ci−1) F (Ci−2) . . .

. . . F (Di+1) F (Di) F (Di−1) F (Di−2) . . .

F (dCi+1)

F (fi+1)

F (dCi )

F (fi)

F (dCi−1)

F (fi−1) F (fi−2)

F (dDi+1) F (dDi ) F (dDi−1)

Moreover, FCh sends chain homotopic chain maps to chain homotopic chain
maps: indeed a chain homotopy H between f, g : C• → D•, represented
schematically by

. . . Ci+1 Ci Ci−1 Ci−2 . . .

. . . Di+1 Di Di−1 Di−2 . . .

dCi+2 dCi+1

fi+1gi+1

Hi+1

dCi

figi

Hi

dCi−1

fi−1gi−1

Hi−1

dCi−2

fi−2gi−2

Hi−2

dDi+2 dDi+1 dDi dDi−1 dDi−2

is sent by F to the chain homotopy F (H) between F (f) and F (g), repre-
sented schematically by

. . . F (Ci+1) F (Ci) F (Ci−1) F (Ci−2) . . .

. . . F (Di+1) F (Di) F (Di−1) F (Di−2) . . .

F (dCi+2) F (dCi+1)

F (fi+1)F (gi+1)

F (Hi+1)

F (dCi )

F (fi)F (gi)

F (Hi)

F (dCi−1)

F (fi−1)F (gi−1)

F (Hi−1)

F (dCi−2)

F (fi−2)F (gi−2)

F (Hi−2)

F (dDi+2) F (dDi+1) F (dDi ) F (dDi−1) F (dDi−2)

We obtain therefore an induced functor K(F ) : K(RMod) → K(SMod),
which is still an additive functor (between additive categories).
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• There are functors P, I : RMod→ K(RMod): the functor P takes as input
a left R-module M and gives a projective resolution P(M)• of M ; the func-
tor I gives an injective resolution, which we treat either as a chain complex
concentrated in non-positive degrees, or as a cochain complex concentrated
in non-negative degrees. In both cases an R-linear map f : M → N is sent
to the homotopy class of a lift of f to a chain map between the resolutions
of M and N . The functors P and I are additive. Their definition in-
volves a choice (how to resolve each module), but up to a canonical natural
isomorphism both functors are intrinsecally defined.
• There is an additive functor HK

n : K(SMod) → SMod, sending a chain
complex to its nth homology group, and a chain homotopy class of chain
maps to the induced map in homology.

We then defined LnF = HK
n ◦ K(F ) ◦ P and RnF = HK

n ◦ K(F ) ◦ I, which are
compositions of additive functors, hence additive functors.
Concretely, it is often already quite interesting just to determine, for an object
M ∈ RMod, the isomorphism type of the S-module LnF (M), respectively RnF (M):
in this case it suffices to choose any projective, respectively injective, resolution of
M , then apply the functor F and thus obtain a new chain complex, and finally
compute the nth homology group35.

Example 11.1. Consider the functor F = −⊗ZZ/3: ZMod→ ZMod, and consider
the Z-modules M1 = Z, M2 = Z/4 and M3 = Z/6. We want to compute, for all
n ∈ Z and for i = 1, 2, 3, the Z-modules LnF (Mi).
A projective resolution of M1 is given by · · · → 0 → 0 → Z → 0 . . . , with Z in
degree 0. Applying F we obtain the chain complex · · · → 0 → 0 → Z/3 → 0 . . . ,
with Z/3 in degree 0. All homology groups of the latter complex vanish, except H0,
which is isomorphic to Z/3. Hence L0F (Z) ∼= Z/3, and LnF (Z) ∼= 0 for all n 6= 0.

A projective resolution of M2 is given by · · · → 0 → Z ·4→ Z → 0 . . . , with Z in

degrees 0 and 1. Applying F we obtain the chain complex · · · → 0→ Z/3 ·4→ Z/3→
0 . . . , with Z/3 in degrees 0 and 1. Multiplication by 4 induces an isomorphism

Z/3
∼=→ Z/3, and therefore all homology groups of the latter chain complex vanish.

Hence LnF (Z/4) ∼= 0 for all n ∈ Z.

A projective resolution of M2 is given by · · · → 0 → Z ·6→ Z → 0 . . . , with Z in

degrees 0 and 1. Applying F we obtain the chain complex · · · → 0 → Z/3 ·6→
Z/3 → 0 . . . , with Z/3 in degrees 0 and 1. Multiplication by 6 induces the zero
map Z/3 → Z/3. Since all differentials in the last chain complex are the zero
map, all homology groups coincide with the corresponding chain groups. Hence
LnF (Z/6) ∼= 0 for all n 6= 0, 1, and both L0F (Z/6) and L0F (Z/6) are isomorphic
to Z/3.

We note that in all three cases of Example 11.1 there is an isomorphism L0F (Mi) ∼=
F (Mi): this is no surprise, as the functor F considered there is a right exact functor
(see Example 10.22).

Example 11.2. Let F , M1, M2 and M3 be as in Example 11.1. We want to
compute, for all n ∈ Z and for i = 1, 2, 3, the Z-modules RnF (Mi).

35If you consider an injective resolution as giving rise to a cochain complex, then you will write
R−nF for the functor RnF and compute the −nth cohomology group. Do not forget that a minus

sign has to be adjoined every time you change the position up/down of the indices!
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An injective resolution of M1 is given by . . . 0 → Q → Q/Z → 0 → . . . , with Q
in cohomological degree 0 and Q/Z in cohomological degree 1 (i.e. in homological
degree −1). Applying F we obtain the zero cochain complex . . . 0→ 0→ 0→ 0→
. . . . To see this, recall that for a Z-module N we have in general that N ⊗Z Z/3 is
isomorphic to the quotient N/3N , where 3N is the submodule of multiples of 3 in
N . Since both Q and Q/Z are divisible, we have Q⊗Z Z/3 ∼= Q/Z⊗Z Z/3 ∼= 0. It
thus follows that RnF (Z) ∼= 0 for all n ∈ Z.
Clearly, the previous argument works also for M2 and M3, and in fact for any other
Z-module M : any injective resolution I• of M consists of injective Z-modules Ii,
and we saw that a Z-module is injective if and only if it is divisible; however, if
each Ii is divisible (and in particular if it is 3-divisible, i.e. each x ∈ Ii can be
written as 3 · y for some y ∈ Ii), then we also have Ii ⊗Z Z/3 ∼= 0 for all i ∈ Z. It
follows that for all n ∈ Z the group RnF (M) vanishes, as it coincides with the nth

cohomology group of the 0 cochain complex.
In other words, for all n ∈ Z the functor RnF : ZMod→ ZMod is the zero functor.

In principle, we want to use left and right derived functors LnF and RnF in order to
understand better the functor F itself; in practice, there is no guarantee that these
derived functors shed any light, and Example 11.2 shows in fact that it doesn’t quit
help to right derive the functor − ⊗Z Z/3. In fact, it is common to consider right
derived functor of a left exact functor, and left derived functors of a right exact
functor: in this case there is a direct connection between F and the 0th derived
functor, and as we will see, this connection “propagates” to the other derived
functors, derived on the side where F is not exact.
It can be interesting to note also the following, regarding which hypotheses are used
in which part of the construction:

• to define the homotopy category K(C) one only needs C to be an additive
category36: one then has a notion of chain complex and of chain homo-
topy; correspondingly, any additive functor F : C → D between additive
categories gives rise to an additive functor K(F ) : K(C)→ K(D);

• to define homology groups Hn(C•) of a chain complex in C, one needs C to
be an abelian category;

• to define the functor P one needs to work with an abelian category with
enough projectives; whereas for I one needs an abelian category with
enough injectives.

In conclusion, if C is an abelian category with enough projectives (respectively,
enough injectives), D is an abelian category, and F : C → D is an additive functor,
one can define left (respectively right) derived functors LnF (respectively RnF ) for
all n ∈ Z.

11.1. Contravariant derived functors. If F : RModop → SMod is an additive
covariant functor, we have defined the composition HK

n ◦ K(F ) ◦ P to be the
“nth left derived functor”. What is the meaning of the word “left”? The tradi-
tional convention is to write exact sequences and chain/cochain complexes with
maps/differentials going from left to right. This has the effect that, if M ∈ RMod,
then K(F ) ◦P(M) looks like

. . . F (P(M)2) F (P(M)1) F (P(M)0) 0 . . .

36Actually, even Z-linear suffices!



HOMALG 2021 91

i.e. it is a chain complex of left S-modules concentrated in non-negative degrees;
referring to the diagram, it is concentrated on the left half-line of degree starting
at the degree 0. This is the reason why we call HK

n ◦K(F )◦P the “nth left derived
functor”. One may object that a more meaningful and intrinsic terminology could
be something like “nth projectively derived functor”; the problem is that, when
working with contravariant functors, one has to recall that a projective object in
an abelian category C is really an injective object of Cop, and a new source of
confusion can arise. It is then better, or at least tradition, to fix a convention
(“arrows of complexes are always drawn from left to right”) and work with such a
convention. Note that in fact we already used this convention when defining what
a “right exact” or “left exact” functor is; for our purposes, it will only be important
that we use twice the same convention.
Consider now an additive, contravariant functor F : RModop → SMod and let n ∈
Z. We have an induced functor K(F ) between homotopy categories, but in this
case K(F ) : K(RMod)op → K(SMod) is a contravariant functor as well, and thus
it transforms chain complexes into cochain complexes37.
For n ∈ Z we can then define LnF as the composition of additive functors

RModop K(RMod)op K(SMod) SModIop K(F ) HK
n

Why do we use now injective resolutions instead of projective ones (as in the co-
variant case) to define a left derived functor? Our convention should be that, after
resolving a left R-module M and applying F to the resolution, we obtain a chain
complex concentrated in non-negative degrees (left half-linea of degrees). This is
exactly what happens with this definition: given M , we first obtain a cochain
complex

. . . 0 I(M)0 I(M)1 I(M)2 . . . ,

and then, applying F , we transform the previous into a chain complex

. . . F (I(M)2) F (I(M)1) F (I(M)0) 0 . . . .

Notice that the last chain complex, i.e. the one obtained after applying F , is
concentrated in non-negative degrees. It follows that LnF is the zero functor for
n < 0, exactly as in the covariant case.
In a similar way, for F contravariant and n ∈ Z, we define RnF as the composition

RModop K(RMod)op K(SMod) SMod.
Pop K(F ) HK

n

As in the covariant case, we have that RnF is the zero functor for n > 0; it is then
common to write RnF for R−nF , in order to use positive indices when describing
interesting things.

Example 11.3. Let M be a projective R-module. As in Example 10.20, θ0(M)•
is a projective resolution of M , and we may assume P(M)• = θ0(M)•. Applying
F we obtain θ0(F (M))•. Applying HK

n (−) we obtain either F (M) (if n = 0), or 0
(if n 6= 0). That is, RnF (M) = 0 for n 6= 0, and R0F (M) ∼= M .

37If you want to avoid the use of cochain complexes, here the crucial remark we will need
is that a contravariant functor transforms chain complexes concentrated in non-negative degrees

into chain complexes concentrated in non-positive degrees
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Example 11.4. Let F be an exact contravariant functor: F is assumed to send
exact sequences to exact sequence, where directions of arrows are changed: more
precisely, an exact contravariant functor from RMod to SMod is an exact covariant
functor from the abelian category RModop to the category SMod.
A contravariant exact functor has the following property: if C• is a chain complex,
then F (C•) is also a chain complex (so far F additive would suffice), and moreover
Hn(F (C•)) is canonically isomorphic to F (H−n(C•)). In fact F also sends kernels
to cokernels, images to images, cokernels to kernels (in the categorical sense). Now
we have, for all n ∈ Z,

LnF (M) = HK
n (K(F )(I(M)•)) ∼= Hn(F (I(M)•))

∼= F (H−n(I(M)•)) ∼= F (H−n(θ0(M)•)),

and the last term is isomorphic to F (M) for n = 0, and vanishes for n 6= 0.

Example 11.5. Suppose that F is a left exact contravariant functor from RMod
to SMod. Then for all M ∈ RMod the sequence

P(M)1
d
P(M)
1→ P(M)0

εPM→ M → 0

is exact. Applying F we obtain that the sequence

0→ F (M)
F (εPM )
→ F (P(M)0)

F (d
P(M)
1 )
→ F (P(M)1)

is also exact. Removing F (M), we obtain the first chunk of the cochain complex
F (P(M)•) = K(F )(P(M)•), reading

0→ F (P(M)0)
F (d

P(M)
1 )
→ F (P(M)1)

and we can compute R0F (M) ∼= ker(F (d
P(M)
1 )) ∼= F (M).

Nice! The functor R0F just coincides with the old functor F ! The functors RnF
for n < 0 will then measure how much F fails from being right exact. It is common
to use non-negative indices and thus to say that R0F is naturally isomorphic to F ,
and that the functors RnF measure how much F fails from being right exact.

The following example is an adaptation of Example 11.1

Example 11.6. Consider the functor F = HomZ(−;Z/3) as a contravariant, addi-
tive functor from ZMod to ZMod, and consider the Z-modules M1 = Z, M2 = Z/4
and M3 = Z/6. We want to compute, for all n ∈ Z (but in fact, for n ≥ 0) and for
i = 1, 2, 3, the Z-modules RnF (Mi).
A projective resolution of M1 is given by · · · → 0 → 0 → Z → 0 . . . , with Z in
degree 0. Applying F we obtain the chain complex . . . 0 → Z/3 → 0 → 0 → . . . ,
with Z/3 in degree 0. All homology groups of the latter complex vanish, except H0,
which is isomorphic to Z/3. Hence R0F (Z) = R0F (Z) ∼= Z/3, and RnF (Z) ∼= 0 for
all n 6= 0.

A projective resolution of M2 is given by · · · → 0 → Z ·4→ Z → 0 . . . , with Z in

degrees 0 and 1. Applying F we obtain the chain complex . . . 0 → Z/3 ·4→ Z/3 →
0→ . . . , with Z/3 in degrees 0 and -1. Multiplication by 4 induces an isomorphism

Z/3
∼=→ Z/3, and therefore all homology groups of the latter chain complex vanish.

Hence RnF (Z/4) ∼= 0 for all n ∈ Z.
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A projective resolution of M2 is given by · · · → 0 → Z ·6→ Z → 0 . . . , with Z
in degrees 0 and 1. Applying F we obtain the chain complex . . . 0 → Z/3 ·6→
Z/3 → 0 → . . . , with Z/3 in degrees 0 and -1. Multiplication by 6 induces the
zero map Z/3→ Z/3. Since all differentials in the last chain complex are the zero
map, all homology groups coincide with the corresponding chain groups. Hence
RnF (Z/6) = R−n(Z/6) ∼= 0 for all n 6= 0, 1, and both R1F (Z/6) and R0F (Z/6) are
isomorphic to Z/3.

We note that the fact that F = HomZ(−;Z/3) is a left exact, contravariant functor
immediately predicts that, in all three cases, we have isomorphisms R0F (Mi) ∼=
F (Mi).

11.2. The horseshoe lemma and the LES of derived functors. If M ′ →
M →M ′′ is a SES in RMod and F : RMod→ SMod is a (for simplicity) covariant,
additive functor, then in general F (M ′) → F (M) → F (M ′′) is not a SES. If
however F is right exact, then two things simultaneously happen:

• by definition, F (M ′)→ F (M)→ F (M ′′)→ 0 is exact;
• by Example 10.22, the functor F coincides with the left derived functor
L0F .

We can then apply L0F to the SES M ′ →M →M ′′ and obtain an exact sequence
L0F (M ′)→ L0F (M)→ L0F (M ′′)→ 0. In general the map L0F (M ′)→ L0F (M)
is not injective; however there is a natural, surjective map onto the kernel of
L0F (M ′) → L0F (M) with source... L1F (M ′′)! We will prove this and a more
general statement in this subsection. The upshot will be that when F is right ex-
act, it is convenient to consider F as L0F , and then to consider L0F as one of the
functors LnF for varying n: each single functor LnF is in general not exact, but
all together these functors give rise to a mild form of exactness, which is anyway
useful for applications38.

Lemma 11.7. Let M ′
i→M

p→M ′′ be a SES in RMod (or in an abelian category
with enough projectives), and fix projective resolutions (P ′•, ε

′) of M ′ and (P ′′• , ε
′′)

of M ′′. Then there exists a projective resolution (P•, ε) of M fitting into a diagram
of left R-modules as follows, in which each row is exact, each column is a SES, and
each square commutes:

. . . P ′3 P ′2 P ′1 P ′0 M ′ 0 . . .

. . . P3 P2 P1 P0 M 0 . . .

. . . P ′′3 P ′′2 P ′′1 P ′′0 M ′′ 0 . . .

dP
′

3

ĩ3

dP
′

2

ĩ2

dP
′

1

ĩ1

ε′

ĩ0 i

dP3

p̃3

dP2

p̃2

dP1

p̃1

ε

p̃0 p

dP
′′

3 dP
′′

2 dP
′′

1 ε′′

We will see the proof of Lemma 11.7 in the next lecture.

The chain maps ĩ and p̃ make P ′•
ĩ→ P•

p̃→ P ′′• into a SES of chain complexes; most
importantly, for all i ∈ Z, we have a SES of left R-modules P ′i → Pi → P ′′i ; since
P ′′i is a projective left R-module, the SES P ′i → Pi → P ′′i is split 39.

38and is anyway the best available on the market, so we should be content with it!
39Here, as usual, we consider projective resolutions as deleted exact sequences, so that, for

instance, P ′• is 0 and not M ′ in degree -1; thus this statement is obvious for i < 0
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We can assume that our functor P : RMod→ K(RMod) sends M ′,M,M ′′ precisely
to P ′•, P•, P

′′
• . We can then apply K(F ), where F is our additive functor fixed at the

beginning of the subsection, and land in K(SMod). And now the miracle occurs:
in spite of the fact that K(F ) is additive but possibly not exact (and in spite of the
fact that the categories K(RMod) and K(SMod) are not even abelian categories,
but only additive categories), the chain complexes F (P ′•), F (P•) and F (P ′′• ) fit into

a SES in the abelian category SCh, namely F (P ′•)
F (̃i)→ F (P•)

F (p̃)→ F (P ′′• ): to check
this, we have to check that we have a SES of left S-modules in each degree, and
this is true because, since P ′i → Pi → P ′′i is a split SES in RMod, we also have
F (P ′i )→ F (Pi)→ F (P ′′i ) is a (split) SES in SMod.
We can now apply the functors HK

n with target SMod, and obtain all evaluations of
left derived functors LnF at M ′, M and M ′′. But now the snake lemma applies and
tells us that the left S-modules LnF (M ′), LnF (M) and LnF (M ′′) fit all together
into a long exact sequence. This creates an unexpected connection between different
left derived functors (but in fact already the snake lemma creates a connection
between homology groups in different degrees).

We remark that P ′•
ĩ→ P•

p̃→ P ′′• from the horseshoe lemma is in general not a split
SES in the abelian category RCh: even if there is no difficulty in finding degreewise
a section P ′′i → Pi, it is not always possible to choose these sections so that they
give a chain map P ′′• → P•.
We summarise the previous discussion in the following two theorems, in which we
also put the generalisation to contravariant functors and/or left exact functors.

Theorem 11.8. Let M ′
i→ M

p→ M ′′ be a SES in RMod, and let F be a co-
variant additive functor from RMod to SMod; then there are natural S-linear maps
∂Ln : LnF (M ′′)→ Ln−1F (M ′) and ∂nR : RnF (M ′′)→ Rn+1F (M ′) giving rise to long
exact sequences of left S-modules

. . . L2F (M ′) L2F (M) L2F (M ′′)

L1F (M ′) L1F (M) L1F (M ′′)

L0F (M ′) L0F (M) L0F (M ′′)→ 0;

∂L
3 L2(i) L2(p)

∂L
2

L1(i) L1(p)

∂L
1

L0(i) L0(p)

0→ R0F (M ′) R0F (M) R0F (M ′′)

R1F (M ′) R1F (M) R1F (M ′′)

R2F (M ′) R2F (M) R2F (M ′′) . . .

R0(i) R0(p)

∂0
R

R1(i) R1(p)

∂1
R

R2(i) R2(p) ∂2
R
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If F is right exact, the first sequence ends with L1F (M ′′) → F (M ′) → F (M) →
F (M ′′) → 0; If F is left exact, the second sequence begins with 0 → F (M ′) →
F (M)→ F (M ′′)→ R1F (M ′).

Theorem 11.9. Let M ′
i→ M

p→ M ′′ be a SES in RMod, and let F be a con-
travariant additive functor from RMod to SMod; then there are natural S-linear
maps ∂Ln : LnF (M ′) → Ln−1F (M ′′) and ∂nR : RnF (M ′) → Rn+1F (M ′′) giving rise
to long exact sequences of left S-modules

. . . L2F (M ′′) L2F (M) L2F (M ′)

L1F (M ′′) L1F (M) L1F (M ′)

L0F (M ′′) L0F (M) L0F (M ′)→ 0;

∂L
3 L2(p) L2(i)

∂L
2

L1(p) L1(i)

∂L
1

L0(p) L0(i)

0→ R0F (M ′′) R0F (M) R0F (M ′)

R1F (M ′′) R1F (M) R1F (M ′)

R2F (M ′′) R2F (M) R2F (M ′) . . .

R0(p) R0(i)

∂0
R

R1(p) R1(i)

∂1
R

R2(p) R2(i) ∂2
R

If F is right exact, the first sequence ends with L1F (M ′) → F (M ′′) → F (M) →
F (M ′) → 0; If F is left exact, the second sequence begins with 0 → F (M ′′) →
F (M)→ F (M ′)→ R1F (M ′′).

Note that Theorem 11.9 reduces to Theorem 11.8 after replacing the SES M ′
i→

M
p→M ′′ in RMod by the SES M ′′

iop→ M
pop→ M in the abelian category RModop.

Exercise 11.10. Formulate and prove the version of the horseshoe lemma which
uses injective resolutions instead of projective resolutions, getting a horseshoe ori-
ented as “@”. This version of the lemma is needed in proving the parts of Theorems
11.8 and 11.9 dealing with right derived functors.

11.3. Tor. Let R be a ring. For a right R-module M we saw that the functor
M ⊗R − : RMod→ ZMod is right exact.

Definition 11.11. For n ∈ Z we define TorRn (M,−) : RMod→ ZMod to be the nth

left derived functor Ln(M ⊗R −).

The name “Tor” is an abbreviation of the word “torsion”, and we will see next time
the explanation of this name.

Example 11.12. Let F be a field, let R = F[x, y], and consider M = F[x, y]/(x)

and N = F[x, y]/(y) as R-modules. We want to compute TorRn (M,N) for all n.
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A projective resolution of N over R is given by . . . 0 → F[x, y]
·y→ F[x, y] → 0 . . . .

Applying the functor M ⊗R −, we obtain the chain complex . . . 0 → F[x, y]/x
·y→

F[x, y]/x→ 0 . . . . Computing homology, we obtain that TorR0 (M,N) = F[x, y]/(x, y) ∼=
M⊗RN , whereas TorR1 (M,N) vanishes, since the map ·y is injective from F[x, y]/(x)
to itself.

One can also consider a left R-module M and the associated right exact functor
−⊗RM : ModR → ZMod.

Definition 11.13. For n ∈ Z we define Ťor
R

n (−,M) : ModR → ZMod to be the
nth left derived functor Ln(−⊗RM).

The notation “Ťor” is non-standard, and we will soon get rid of it: we will in fact
prove the following theorem.

Theorem 11.14. For all M ∈ ModR and N ∈ RMod and for all n ∈ Z there is an

isomorphism of abelian groups TorRn (M,N) ∼= Ťor
R

n (M,N) which is natural both
in M and in N .

11.4. Ext. Let R be a ring. For a left R-module N we saw that the functor
HomR(−, N) : RModop → ZMod is contravariant and left exact.

Definition 11.15. For n ∈ Z we define ExtnR(−, N) : RModop → ZMod to be the
right derived functor Rn(HomR(−, N)).

The name “Ext” is an abbreviation of the word “extension”, and we will see next
time the explanation of this name.

Example 11.16. Let F be a field, let R = F[x, y], and consider M = F[x, y]/(x)
and N = F[x, y]/(y) as R-modules. We want to compute ExtnR(M,N) for all n.

A projective resolution of N over R is given by . . . 0 → F[x, y]
·y→ F[x, y] → 0 . . . ,

with non-vanishing terms in degrees 0 and 1. Applying the contravariant functor

HomR(−, N), we obtain the chain complex . . . 0 → F[x, y]/x
·y→ F[x, y]/x → 0 . . . ,

with non-vanishing terms in degrees 0 and −1. Hence we already expect only
Ext0

R(M,N) and Ext1
R(M,N) = L−1(HomR(−, N))(M) possibly not to vanish.

Computing homology, we obtain that Ext1
R(M,N) = F[x, y]/(x, y), whereas Ext0

R(M,N)
vanishes, since the map ·y is injective from F[x, y]/(x) to itself. Note that Ext0

R(M,N) =
0 = HomR(M,N), as it should be.

One can also consider a left R-module M and the left exact, covariant functor
HomR(M,−) : RMod→ ZMod.

Definition 11.17. For n ∈ Z we define Ěxt
n

R(M,−) : RMod → ZMod to be the
functor Rn(HomR(M,−)).

The notation “Ěxt” is non-standard, and we will soon get rid of it: we will in fact
prove the following theorem.

Theorem 11.18. For all M,N ∈ RMod and for all n ∈ Z there is an isomorphism
of abelian groups ExtnR(M,N) ∼= Ěxt

n

R(M,N) which is natural both in M and in
N .

The meaning of the emphasized naturality statements in Theorems 11.14 and 11.18
will be also explained in the future.
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12. Proof of horseshoe lemma, examples of Tor and Ext

12.1. Proof of Lemma 11.7. First, note that if the statement holds, then for each
n ≥ 0 we have a SES P ′n → Pn → P ′′n which must be split since P ′′n is projective.
It is therefore no harm defining Pn := P ′n⊕P ′′n , and setting ĩn : P ′n → P ′n⊕P ′′n and
p̃n : P ′n ⊕ P ′′n → P ′′n to be the natural inclusion and projection.
We work recursively, and start from the diagram

. . . P ′3 P ′2 P ′1 P ′0 M ′ 0 . . .

P ′0 ⊕ P ′′0 M 0 . . .

. . . P ′′3 P ′′2 P ′′1 P ′′0 M ′′ 0 . . .

dP
′

3 dP
′

2 dP
′

1 ε′

ĩ0 i

p̃0

ε

p

dP
′′

3 dP
′′

2 dP
′′

1 ε′′

Our first aim is to define a surjective R-linear map ε : P0 = P ′0⊕P ′′0 →M making the
previous diagram commute. We let ε|P ′0 = i◦ε′, which is in fact a forced assignment
if we want the top square to commute. We then use that P ′′0 is projective and lift
the map ε′′ : P ′′0 → M ′′ along the surjective map p : M → M ′′: we declare the
resulting map to be ε|P ′′0 . By this assignment we obtain a commutative diagram
whose columns are SESs

P ′0 M ′

P ′0 ⊕ P ′′0 M

P ′′0 M ′′

ε′

ĩ0 i

p̃0

ε

p

ε′′

And now we use a nice trick: we add zeroes on left and right in order to obtain a
SES of chain complexes40

. . . 0 0 0 P ′0 M ′ 0 . . .

. . . 0 0 0 P ′0 ⊕ P ′′0 M 0 . . .

. . . 0 0 0 P ′′0 M ′′ 0 . . .

ε′

ĩ0 i

p̃0

ε

p

ε′′

The snake lemma provides a long exact sequence of homology groups. In particular
we obtain an exact sequence

0 ker(ε′) ker(ε) ker(ε′′)

coker(ε′) coker(ε) coker(ε′′) 0,

40These chain complexes have very little to do with the projective resolutions we starter with,
but still more than nothing
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by neglecting all homology groups that are utterly zero. We now recall that ε′ and
ε′′ are surjective, hence coker(ε′) = coker(ε′′) = 0; it follows by exactness that also
coker(ε) = 0, i.e. ε is automatically surjective (this is one of the things we wanted
to check). Moreover the above LES reduces to a SES ker(ε′)→ ker(ε)→ ker(ε′′).
The next step is to find a map dP1 making the following diagram commute

. . . P ′3 P ′2 P ′1 P ′0 M ′ 0 . . .

P ′1 ⊕ P ′′1 P ′0 ⊕ P ′′0 M 0 . . .

. . . P ′′3 P ′′2 P ′′1 P ′′0 M ′′ 0 . . . ,

dP
′

3 dP
′

2 dP
′

1

ĩ1

ε′

ĩ0 i

p̃0

dP1

p̃0

ε

p

dP
′′

3 dP
′′

2 dP
′′

1 ε′′

with the additional requirement that the image of dP1 is ker(ε). We define dP1 |P ′1 =

dP
′

1 ◦ ĩ0 and we lift dP
′′

1 : P ′′1 → ker(ε′′) along the surjective map ker(ε) → ker(ε′′)
to obtain a map P ′′1 → ker(ε), that we declare to be dP1 |P ′′1 . We then consider the
SES of chain complexes

. . . 0 0 0 P ′1 ker(ε′) 0 . . .

. . . 0 0 0 P ′1 ⊕ P ′′1 ker(ε) 0 . . .

. . . 0 0 0 P ′′1 ker(ε′′) 0 . . .

dP
′

1

ĩ1 ĩ0

p̃1

dP1

p̃0

dP
′′

1

and from the corresponding LES of homology groups we deduce, similarly as above,
that d1

P → ker(ε) is surjective, and that there is a SES ker(dP
′

1 ) → ker(dP1 ) →
ker(dP

′′

1 ). We continue constructing all differentials dPn in this way: at each step
we guarantee that all squares commute, and each dPn is constructed so as to have
image contained in (and in fact coinciding with) ker(dPn−1).
Note that the first diagram in the proof of Lemma 11.7 has a shape “A” that
reminds the shape of a horseshoe.

12.2. Naturality of Tor and Ext in the fixed module. Let R be a ring, let
M and M ′ be right R-modules, and let f : M →M ′ be an R-linear map. We want
use f to compare, for all n ∈ Z, the functors TorRn (M,−) and TorRn (M ′,−): both
are functors RMod→ ZMod.
Let N be a left R-module. To compute TorRn (M,N) and TorRn (M ′, N), we first
need (in both cases) to replace N ∈ RMod by the projective resolution P(N)•,
which is a chain complex41.
The next step is to apply the functors M ⊗R− and M ′⊗R− to the chain complex
P(N)•, obtaining chain complexes of abelian groups M ⊗R P(N)• and M ′ ⊗R
P(N)•. The complex M⊗RP(N)• hasM⊗RP(N)i in degree i, and the differentials
are given by tensoring the differentials of P(N)• with the identity of M ; similarly

41Technically, we consider P(N)• as an object in the homotopy category K(RMod)
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for the complex M ′ ⊗R P(N)•. We can now use the R-linear map f : M → M ′ to
define a chain map f ⊗R IdP(N)• : the chain map is given schematically by

. . . M ⊗R P(N)3 M ⊗R P(N)2 M ⊗R P(N)1 M ⊗R P(N)0 0

. . . M ′ ⊗R P(N)3 M ′ ⊗R P(N)2 M ′ ⊗R P(N)1 M ′ ⊗R P(N)0 0.

IdM⊗Rd
P
4 IdM⊗Rd

P
3

f⊗RIdP(N)3

IdM⊗Rd
P
2

f⊗RIdP(N)2

IdM⊗Rd
P
1

f⊗RIdP(N)1

IdM⊗Rd
P
0

f⊗RIdP(N)0

IdM′⊗Rd
P
4 IdM′⊗Rd

P
3 IdM′⊗Rd

P
2 IdM′⊗Rd

P
1 IdM′⊗Rd

P
0

We only consider the chain homotopy class of f ⊗R IdP(N)• . We can now compute

nth homology, obtaining two abelian groups TorRn (M,N) and TorRn (M ′, N); but we
also have a Z-linear map between them, which we can denote by

TorRn (f,N) : TorRn (M,N)→ TorRn (M ′, N);

this is the map induced in homology by the chain map f ⊗R IdP(N)• . For varying

N , the maps TorRn (f,N) assemble into a natural transformation

TorRn (f,−) : TorRn (M,−)⇒ TorRn (M ′,−).

What we saw above is a particular example of a more general principle. Suppose
that F and F ′ are additive functors RMod → SMod42, and suppose that φ is a
natural transformation φ : F ⇒ F ′. Then we can define a natural transformation
Lnφ : LnF ⇒ LnF ′ as follows: given N ∈ RMod we apply F and F ′ to the chain
complex P(N)•, and we use φ to define a chain map as follows:

. . . F (P(N)3) F (P(N)2) F (P(N)1) F (P(N)0) 0

. . . F ′(P(N)3) F ′(P(N)2) F ′(P(N)1) F ′(P(N)0) 0.

F (dP4 ) F (dP3 )

φP(N)3

F (dP2 )

φP(N)2

F (dP1 )

φP(N)1

F (dP0 )

φP(N)0

F (dP4 ) F ′(dP3 ) F ′(dP2 ) F ′(dP1 ) F ′(dP0 )

We only consider the homotopy class of the chain map φP(N)• . Applying the

functor HK
n , we obtain a map LnφN : LnF (N)→ LNF ′(N), and the maps LnφN ,

for varying N , assemble into a natural transformation Lnφ as above.

Exercise 12.1. Suppose that f : M → M ′ and g : M ′ → M ′′ are R-linear maps
between right R-modules.
Prove that the composite natural transformation TorRn (f,−) ◦TorRn (g,−) coincides

with TorRn (f ◦ g,−). Hint: this check has to be made objectwise, so fix N ∈ RMod

and check that TorRn (f,N) ◦ TorRn (g,N) coincides with TorRn (f ◦ g,N), as maps of

abelian groups TorRn (M,N)→ TorRn (M ′′, N).

If now M,M ′ ∈ RMod are left R-modules, and f : M → M ′ is an R-linear map,
we can apply the principle above to the contravariant functors HomR(−,M) and
HomR(−,M ′), which are functors RMod→ ZMod connected by a natural transfor-
mation Hom(−, f) : HomR(−,M)⇒ HomR(−,M ′). We obtain a natural transfor-
mation

ExtnR(−, f) : ExtnR(−,M)⇒ ExtnR(−,M ′).

Exercise 12.2. Discuss in a similar way what happens about the functors from
Definitions 11.13 and 11.17 when considering a R-linear maps between two choices
of fixed module.

42Or between two abelian categories, the first of which has enough projectives
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Exercise 12.3. Let M and M ′ be right R-modules. Note that the functors

RMod → ZMod given by (M ⊕M ′) ⊗R − and (M ⊗R −) ⊕ (M ′ ⊗R −) are nat-
urally isomorphic. Prove that for all n ∈ Z also the functors RMod → ZMod
given by TorRn (M ⊕M ′,−) and TorRn (M,−) ⊕ TorRn (M ′,−) are naturally isomor-
phic. Prove similarly that ExtnR(−,M) ⊕ ExtnR(−,M ′) is naturally isomorphic to
ExtnR(−,M⊕M ′) as functors ModR → ModR. Discuss also the other functors from
Definitions 11.13 and 11.17.

12.3. More examples of computations of Tor and Ext.

Example 12.4. Recall Examples 10.10 and 10.11. Let p be a prime number, let
n ≥ 2 and let 1 ≤ k ≤ n − 1. Consider the ring R = Z/pn and the R-modules
M = Z/p and N = Z/pk.

Let us compute TorRn (M,N) for all n. A projective resolution of N over R is the
infinite, periodic resolution

. . . Z/pn Z/pn Z/pn Z/pn Z/pn Z/pn 0 . . . ,
·pn−k ·pk ·pn−k ·pk ·pn−k ·pk

with the right-most Z/pn in degree 0, and with augmentation [−]pk : Z/pn → Z/pk.
Applying the functor M ⊗R − = Z/p⊗Z/pn − we obtain the chain complex

. . . Z/p Z/p Z/p Z/p Z/p Z/p 0 . . . ,
·pn−k ·pk ·pn−k ·pk ·pn−k ·pk

and since multiplication by a multiple of p induces the zero map on Z/p, we
have that all differentials in the last chain complex are zero. It follows that

TorZ/p
n

n (Z/p,Z/pk) ∼= Z/p for all n ≥ 0.
Let us now compute ExtnR(N,M) for all n. We apply the contravariant functor
HomR(−,M) = HomZ/pn(−,Z/p) to the projective resolution of N , obtaining the
cochain complex

. . . 0 Z/p Z/p Z/p Z/p Z/p Z/p . . . ,
·pk ·pn−k ·pk ·pn−k ·pk ·pn−k

where the left-most Z/p is in degree 0, and the next one is in homological degree
-1, i.e. cohomological degree 1. Again all differentials vanish. It follows that
ExtnZ/pn(Z/pk,Z/p) ∼= Z/p for all n ≥ 0.

Each half of the previous computation implies that every projective resolution of
Z/pk over Z/pn must have infinite length: if by absurd there was a projective
resolution of finite length ` ≥ 0, we could use this resolution to compute, for
instance, TorR`+1(M,N) ∼= 0. But we know that any two projective resolutions
give up to isomorphism the same Tor groups, and the computation above gives
TorR`+1(M,N) ∼= Z/p.
We can now make a small comparison among the rings Z/p, Z/pn (with n ≥ 2) and
Z:

• Z/p is a field, hence every Z/p-module is projective and thus admits a
projective resolution of length ≤ 0 (i.e. length 0);
• Z is a PID, hence every Z-module admits a projective (actually free) reso-

lution of length ≤ 1;
• Z/pn has modules that only admit projective resolutions of infinite length.

Definition 12.5. Let R be a ring and M be a left R-module. The projective
dimension of M over R, denoted pd(M), is the minimum ` ≥ 0 such that M
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admits a projective resolution over R of length `; if such an ` does not exist, we
say that M has infinite projective dimension.
The left, projective global dimension of the ring R, denoted lpdim(R), is the supre-
mum of all projective dimensions of all left R-modules. The right, projective global
dimension is denoted rpdim(R) and is defined in an analogous way, after defining
the projective dimension of right R-modules.

If R is commutative (the case we are now most interested in), then left and right
projective global dimensions coincide: in this case we just write pdim(R) for the
global dimension of R. The discussion above can be summarised as follows:

• pdim(Z/p) = 0;
• pdim(Z) = 1;
• pdim(Z/pn) =∞ for n ≥ 2.

Exercise 12.6. Generalise Example 12.4 and compute TorZ/p
n

n (Z/p`,Z/pk) and
ExtnZ/pn(Z/p`,Z/pk) for all n ≥ 2 and all 1 ≤ k, ` ≤ n− 1.

13. Balancing of Tor and Ext

Let R be a ring. We have introduced so far several functors:

• for a right R-module M , we have a functor

M ⊗R − : RMod→ ZMod,

with left derived functors

TorRn (M,−) : RMod→ ZMod;

• for a left R-module N , we have a functor

−⊗R N : ModR → ZMod,

with left derived functors

Ťor
R

n (−, N) : ModR → ZMod;

• for a right R-module M (respectively, a left R-module N) we have a con-
travariant functor

HomR(−,M) : ModR
op → ZMod

(respectively, HomR(−, N) : RModop → ZMod),

with right derived functors

ExtnR(−,M) : ModR
op → ZMod

(respectively, ExtR(−, N) : RModop → ZMod);

• for a right R-module M (respectively, a left R-module N) we have a functor

HomR(M,−) : ModR → ZMod

(respectively, HomR(N,−) : RMod→ ZMod),

with right derived functors

Ěxt
n

R(M,−) : ModR → ZMod

(respectively, ĚxtR(N,−) : RMod→ ZMod).
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We have already seen that an R-linear map of right R-modules M → M ′ induces
a natural transformation f ⊗R − : M ⊗R − ⇒ M ′ ⊗R −, which induces in turn a
derived natural transformation TorRn (f,−) : TorRn (M,−)⇒ TorRn (M ′,−); similarly,
f induces natural transformations:

• HomR(−, f) : HomR(−,M)⇒ HomR(−,M ′), inducing in turn natural trans-
formations ExtnR(−, f) : ExtnR(−,M)⇒ ExtnR(−,M ′);
• HomR(f,−) : HomR(M ′,−)→ HomR(M,−), inducing in turn natural trans-

formations Ěxt
n

R(f,−) : Ěxt
n

R(M ′,−)⇒ Ěxt
n

R(M,−).

(check carefully that in this last case the natural transformation goes in the opposite
direction!).

We can thus think of TorRn as a functor with ModR as source and the functor
category Fun(RMod, ZMod) as target, according to the following definition.

Definition 13.1. Let C and D be two categories; we define Fun(C,D) to be the
category whose objects are functors F : C → D, and whose morphisms F → F ′ are
natural transformations φ : F ⇒ G, for two functors F and F ′.

Alternatively, we can use the following definition, giving an “adjoint” description
of TorRn .

Definition 13.2. Let C and D be two categories. We define C � D to be the
category whose objects are pairs (x, y) with x ∈ C and y ∈ D, and whose morphisms
(x, y)→ (x′, y′) are pairs of morphisms f : x→ x′ in C and g : y → y′ in D.

We can then consider −⊗R − as a functor ModR � RMod→ ZMod, and similarly

both TorRn (−,−) and Ťor
R

n (−,−) can be considered as functors ModR � RMod→
ZMod.
Similarly, we can consider HomR(−,−), ExtnR(−,−) and Ěxt

n

R(−,−) as functors

RModop�RMod→ ZMod, or in the case of right R-modules as functors ModR
op�

ModR → ZMod.
We can now state Theorems 11.14 and 11.18 in a more functorial way.

Theorem 13.3. Let R be a ring and let n ∈ Z; then the following couples of
functors are naturally isomorphic:

• TorRn (−,−) and Ťor
R

n (−,−), from ModR � RMod to ZMod;

• ExtnR(−,−) and Ěxt
n

R(−,−), from RModop � RMod to ZMod;

• ExtnR(−,−) and Ěxt
n

R(−,−), from ModR
op �ModR to ZMod.

The rest of the lecture is devoted to the proof of Theorems 11.14 and 11.18, i.e.
the objectwise version of 13.3. The proof of Theorem 13.3 is then left as exercise
(see Exercise 13.6). We will also mainly focus on the proof of Theorem 11.14, and
only sketch the (quite analogous) proof of theorem 11.18.

13.1. Double complexes with exact rows. In this subsection we prove a key
lemma, which at first glance has little to do with Theorems 11.14 and 11.18.

Lemma 13.4. Let E•,• be a double complex of abelian groups43. Assume that
Ei,j = 0 whenever i < 0 or j < 0 (or both). Assume further that each row of E•,•

43The lemma holds in any abelian category different from ZMod, but we will only use it in this
special case
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is exact, i.e. for all fixed i ∈ Z we have an exact sequence

. . . Ei,3 Ei,2 Ei,1 Ei,0 0 . . . .
d′′i,4 d′′i,3 d′′i,2 d′′i,1

Then the total chain complex Tot(E)•, constructed according to Definition 9.19, is
acyclic/exact.

Proof. We have to prove that all homology groups of Tot(E)• vanish; note that
Tor(E)• is concentrated in non-negative degrees, indeed Ei,j = 0 whenever i+j < 0.
Hence we have to prove that Hn(Tot(E)•) = 0 for all n ≥ 0: very concretely, this
means that each cycle in Tot(E)• is also a boundary.
Let n ≥ 0 be fixed, and let x ∈ Tot(E)n be a cycle: we have Tot(E)n =

⊕n
i=0Ei,n−i,

hence we can write x as a formal sum x0 ⊕ · · · ⊕ xn with xi ∈ Ei,n−i, where the
“⊕” is to stress that these components belong to different summands Ei,n−i.
By exactness of the nth row, the map d′′n,1 : En,1 → En,0 is surjective, hence there
is yn ∈ En,1 with d′′n,1(yn) = xn. We can consider yn as an element in Tot(E)n+1:
we then have dn+1(yn) = d′n,1(yn)⊕ (−1)nd′′n,1(yn)
Recall that our aim is to prove that the cycle x is a boundary in the complex
Tot(E)•: it is equivalent to prove that the cycle x(1) := x − (−1)ndn+1(yn) is a
boundary.
The cycle x(1) of Tot(E)• has a new feature that x, a priori, did not have: its compo-

nent in En,0 vanishes. We then write x(1) = x
(1)
0 + · · ·+x

(1)
n , with x

(1)
i ∈ Ei,n−i and

with x
(1)
n = 0. Now we compute the differential of x(1), which is supposed to vanish:

the formula predicts that dn(x(1)) has a component in En−1,0 ⊂ Tot(E)n−1 equal to

d′n,0(x
(1)
n )+(−1)n−1d′′(x

(1)
n−1), and using that x

(1)
n = 0 we get just (−1)n−1d′′(x

(1)
n−1).

This component of dn(x(1)) must vanish, but this implies, by exactness of the

n − 1st row of E•,•, that x
(1)
n−1 ∈ En−1,1 can be written as d′′n−1,2(yn−1), for some

yn−1 ∈ En−1,2.

We can then perturb x(1) to a new cycle x(2) := x(1)−(−1)n−1dn+1(yn−1). Proving
that x(2) is a boundary is equivalent to proving that x(1) is a boundary, but now
we have a new feature: the cycle x(2) has trivial components in bidegrees (n, 0) and
(n− 1, 0).
The next step is to compute the component of dn(x(2)) in bidegree (n− 2, 1), and

conclude that x
(2)
n−2 is equal to d′′n−2(yn−2) for some yn−2 ∈ En−2,3, using exactness

of the n− 2nd row of E•,•.
By this procedure we recursively perturb our original cycle x and obtain a sequence
of cycles x, x(1), x(2), . . . , x(n+1) ∈ Tot(E)n: each two consecutive cycles differ by
a boundary, and the cycle x(j) has trivial components in the summands En−i,i for

i < j. In particular the last cycle x(n+1) is the zero cycle. This proves that all x(j)

and also x are boundaries in the chain complex Tot(E)•. �

Note that the statement of Lemma 13.4 also holds if we do not assume that all rows
of E•,• are exact, but instead assume that all columns of E•,• are exact. We can
also change the assumption “Ei,j = 0 whenever i < 0 or j < 0” to the assumption,
depending on two fixed constants ī, j̄ ∈ Z, “Ei,j = 0 whenever i < ī or j < j̄”.
Finally, there is a dual version which we state as an exercise. To have a genuinely

dual statement we use the alternative total complex T̂ot(E)•, but you can check
that in this situation each product involved in defining a degree component of
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T̂ot(E)• is in fact a finite product, so it coincides with the corresponding direct
sum. In other words, in the statement of the following exercise it is harmless to

replace T̂ot(E)• by Tot(E)•.

Exercise 13.5. Let E•,• be a double complex of abelian groups. Assume that
Ei,j = 0 whenever i > 0 or j > 0 (or both). Assume further that each row of E•,•
is exact, i.e. for all fixed i ∈ Z we have an exact sequence

. . . 0 Ei,0 Ei,−1 Ei,−2 Ei,−3 . . .
d′′i,0 d′′i,−1 d′′i,−2 d′′i,−3

Then the alternative total chain complex T̂ot(E)•, constructed according to Defi-
nition 9.20, is acyclic/exact.

13.2. Tensor product of resolutions. Let M be a right R-module and N be a
left R-module, and fix projective resolutions (P•, ε) of M (in ModR) and (Q•, υ)
of N (in RMod). We can create a double complex of abelian groups P• ⊗R Q•
by tensoring the two projective resolutions: in bidegree (i, j) we have the abelian
group Pi ⊗R Qj . Compare with the construction in Subsection 9.5. We obtain the

following double complex, which we call EP,Q•,• for short in the following

...
...

...
...

...

. . . P3 ⊗R Q3 P3 ⊗R Q2 P3 ⊗R Q1 P3 ⊗R Q0 0 . . .

. . . P2 ⊗R Q3 P2 ⊗R Q2 P2 ⊗R Q1 P2 ⊗R Q0 0 . . .

. . . P1 ⊗R Q3 P1 ⊗R Q2 P1 ⊗R Q1 P1 ⊗R Q0 0 . . .

. . . P0 ⊗R Q3 P0 ⊗R Q2 P0 ⊗R Q1 P0 ⊗R Q0 0 . . .

. . . 0 0 0 0 0 . . .

...
...

...
...

...

dP4 ⊗IdQ3
dP4 ⊗IdQ2

dP4 ⊗IdQ1
dP4 ⊗IdQ0

IdP⊗dQ IdP3
⊗dQ3

dP3 ⊗IdQ3

IdP3
⊗dQ2

dP3 ⊗IdQ2

IdP3
⊗dQ1

dP3 ⊗IdQ1
dP3 ⊗IdQ0

IdP2
⊗dQ4 IdP2

⊗dQ3

dP2 ⊗IdQ3

IdP2
⊗dQ2

dP2 ⊗IdQ2

IdP2
⊗dQ1

dP2 ⊗IdQ1
dP2 ⊗IdQ0

IdP1
⊗dQ4 IdP1

⊗dQ3

dP1 ⊗IdQ3

IdP1
⊗dQ2

dP1 ⊗IdQ2

IdP1
⊗dQ1

dP1 ⊗IdQ1
dP1 ⊗IdQ0

IdP0
⊗dQ4 IdP0

⊗dQ3 IdP0
⊗dQ2 IdP0

⊗dQ1

Our aim is to prove, for all n ∈ Z, that Hn(Tot(EP,Q)•) is isomorphic to both

TorRn (M,N) and to Ťor
R

n (M,N): this would imply Theorem 11.14. You will ap-

preciate how the construction of the double complex EP,Q•,• is symmetric in M and
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N , in the sense that the two modules are treated in the same way: instead of re-
solving only N (as when computing TorRn (M,N)), or only M (as when computing

Ťor
R

n (M,N)), we are now projectively resolving both modules, and then applying
the bifunctor − ⊗R −. In the following we will prove that Hn(Tot(EP,Q)•) is iso-

morphic to Ťor
R

n (M,N); the other isomorphism Hn(Tot(EP,Q)•) ∼= TorRn (M,N) is
analogous.

13.3. A short exact sequence of double complexes. The double complex EP,Q•,•
can be recovered as follows. We take the tensor product of the exact sequence

. . .
dP3→ P2

dP2→ P1
dP1→ P0

ε→M → 0 . . .

with the chain complex Q•, and obtain a double complex EP,M,Q
•,• represented

schematically as follows

...
...

...
...

...

. . . P3 ⊗R Q3 P3 ⊗R Q2 P3 ⊗R Q1 P3 ⊗R Q0 0 . . .

. . . P2 ⊗R Q3 P2 ⊗R Q2 P2 ⊗R Q1 P2 ⊗R Q0 0 . . .

. . . P1 ⊗R Q3 P1 ⊗R Q2 P1 ⊗R Q1 P1 ⊗R Q0 0 . . .

. . . P0 ⊗R Q3 P0 ⊗R Q2 P0 ⊗R Q1 P0 ⊗R Q0 0 . . .

. . . M ⊗R Q3 M ⊗R Q2 M ⊗R Q1 M ⊗R Q0 0 . . .

. . . 0 0 0 0 0 . . .

...
...

...
...

...

dP4 ⊗IdQ3
dP4 ⊗IdQ2

dP4 ⊗IdQ1
dP4 ⊗IdQ0

IdP⊗dQ IdP3
⊗dQ3

dP3 ⊗IdQ3

IdP3
⊗dQ2

dP3 ⊗IdQ2

IdP3
⊗dQ1

dP3 ⊗IdQ1
dP3 ⊗IdQ0

IdP2
⊗dQ4 IdP2

⊗dQ3

dP2 ⊗IdQ3

IdP2
⊗dQ2

dP2 ⊗IdQ2

IdP2
⊗dQ1

dP2 ⊗IdQ1
dP2 ⊗IdQ0

IdP1
⊗dQ4 IdP1

⊗dQ3

dP1 ⊗IdQ3

IdP1
⊗dQ2

dP1 ⊗IdQ2

IdP1
⊗dQ1

dP1 ⊗IdQ1
dP1 ⊗IdQ0

IdP0
⊗dQ4 IdP0

⊗dQ3

ε⊗IdQ3

IdP0
⊗dQ2

ε⊗IdQ2

IdP0
⊗dQ1

ε⊗IdQ1
ε⊗IdQ0

IdM⊗dQ4 IdM⊗dQ3 IdM⊗dQ2 IdM⊗dQ1

The double complex EP,M,Q
•,• contains a sub-double-complex EM,Q

• , •, spanned by

the elements in bidegrees (−1, i) for varying i: the double complex EM,Q
•,• looks like

a single row, placed at height -1, and surrounded by zeroes. We have in particular
an isomorphism of chain complexes

Tot(EM,Q)• ∼= M ⊗R (Σ−1Q•);
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in particular, up to a mild shift, the homology groups of Tot(EM,Q)• are precisely

the groups TorRn (M,N), obtained by resolving N projectively and then tensoring
with M .
The quotient of double complexes EP,M,Q

•,• /EM,Q
•,• is then isomorphic to EP,Q•,• ; if we

take total chain complexes, we obtain a short exact sequence of chain complexes

Tot(EM,Q)• → Tot(EP,M,Q)• → Tot(EP,Q)•

And now the wonderful remark: the double complex EP,M,Q
•,• has exact columns!

Indeed the ith column it is obtained by applying the exact functor −⊗R Qi to the
exact sequence

. . .
dP3→ P2

dP2→ P1
dP1→ P0

ε→M → 0 . . . .

You should appreciate how the module N , and in particular the functor − ⊗R N ,
just don’t play a role in the previous argument. By Lemma 13.4 we then have that
Tot(EP,M,Q)• is acyclic; we can then apply the snake lemma segment-wise, and
obtain exact sequences

Hn(Tot(EP,M,Q)•) = 0 Hn(Tot(EP,Q)•)

Hn−1(Tot(EM,Q)•) ∼= TorRn (M,N) Hn−1(Tot(EP,M,Q)•) = 0

∂n

∼=

This concludes the proof of Theorem 11.14.

Exercise 13.6. For n ∈ Z define a functor Tor
R

n (−,−) : ModR � RMod → ZMod
as the following composition (part of the exercise is to make sense of all categories
and functors)

ModR � RMod K(ModR)�K(RMod) K(ZMod) ZMod.
P�P K(Tot(−⊗R−)) HK

n

Prove that the functor Tor
R

n (−,−) is naturally isomorphic to both TorRn (−,−) and

Ťor
R

n (−,−), by putting together, for varying M,N , the isomorphisms produced in
the proof of Theorem 11.14.

13.4. Tor and flat resolutions. The argument of the proof of Theorem 11.14
seen in the previous section can be summarised as follows:

• we choose projective resolutions (P•, ε) and (Q•, υ) of our modules M and
N ;
• we construct a double complex EP,Q by tensoring the two resolutions;
• up to shifts, we find a short exact sequence of chain complexes involving
P• ⊗R Q, an acyclic chain complex, and Tot(EP,Q)•;
• we apply the snake lemma.

The acyclic complex arises by applying Lemma 13.4 to a double complex EP,M,Q

with acyclic columns; the proof of acyclicity of columns of EP,M,Q uses crucially
that the functors −⊗R Qi are exact, because Qi are projective, hence flat.
In fact, the argument would have worked if we just assume from the very begin-
ning that Q• is a flat resolution of N in RMod. We therefore obtain this spin off
proposition.
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Proposition 13.7. Let M ∈ ModR and N ∈ RMod, let (Q•, υ) be a flat resolution
of N ; then for all n ∈ Z the nth homology group of the chain complex M ⊗R Q• is

isomorphic to TorRn (M,N) (and to Ťor
R

n (M,N) as well, by Theorem 11.14).

Proof. Choose a projective resolution (P•, ε) of M , and apply the argument of the
previous subsection word by word. �

It is important to stress that Proposition 13.7 does not imply that one can use
flat resolutions of left R-modules to define, up to natural isomorphism, the functor
TorRn (M,−). A functor must be defined not only on objects, but also on morphisms.

The behaviour of TorRn (M,−) on R-linear maps f : N → N ′ is defined by lifting
f to a chain map between the resolutions of N and N ′ respectively; the existence
of such a lift, as well as its uniqueness up to chain homotopy, have been proved
using that the resolutions are projective. Hence proposition 13.7 does not admit a
genuine functorial version.

Example 13.8. Let M be an abelian group. We want to compute TorZ1 (M,Q/Z).
For this, we fix a flat resolution of Q/Z, namely · · · → 0 → Z → Q → 0 . . . ; we
then apply the functor M ⊗Z −, obtaining the chain complex

. . . 0 M M ⊗Z Q 0 . . . .

We then have a description of TorZ1 (M,Q/Z) as the kernel of the map of abelian
groups M →M ⊗Z Q sending m 7→ m⊗ 1.
We can now identify M ⊗Z Q with the localisation (Z \ {0})−1M , and write the
previous as the map m 7→ m

1 . An element m ∈ M lies in the kernel of the latter

map if and only if m
1 = 0

1 , i.e. there exists t ∈ Z \ {0} such that t ·m = 0. This
precisely means that m ∈ tors(M), see Definition 5.22.

With a little more care, we can conclude the following: TorZ1 (−,Q/Z) is naturally
isomorphic, as a functor ZMod → ZMod, to the functor tors assigning to each
Z-module its torsion submodule.

Example 13.8 is more or less the reason why we use “Tor” to designate the left
derived functors of the tensor product.

13.5. Sketch of proof of Theorem 11.18. Let now for simplicity M,N ∈ RMod,
let (P•, ε) be a projective resolution of M , and let (I•, η) be an injective resolution

of N , i.e. 0→ N
η→ I0 → I−1 → I−2 → . . . is exact.
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One can then construct two double complexes as follows. The first is called EP,M,I
•,•

and has exact columns:

...
...

...

. . . 0 0 0 . . .

. . . 0 HomR(M, I0) HomR(M, I−1) . . .

. . . 0 HomR(P0, I0) HomR(P0, I−1) . . .

. . . 0 HomR(P1, I0) HomR(P1, I−1) . . .

...
...

...

Hom(IdM ,dI0)

Hom(ε,IdI0
)

Hom(IdM ,dI−1)

Hom(ε,IdI−1
)

Hom(IdP0
,dI0)

Hom(dP1 ,IdI0
)

Hom(IdP0
,dI−1)

Hom(dP1 ,IdI−1
)

Hom(IdP1
,dI0)

Hom(dP2 ,IdI0
)

Hom(IdP1
,dI−1)

Hom(dP2 ,IdI−1
)

The second is called EP,I,N•,• and has exact rows:
The same double complex EP,I , represented schematically as follows, occurs as sub-
double-complex of EP,M,I and EP,I,N by considering only elements in non-positive
bidegrees

...
...

...

. . . 0 0 0 . . .

. . . 0 HomR(P0, I0) HomR(P0, I−1) . . .

. . . 0 HomR(P1, I0) HomR(P1, I−1) . . .

...
...

...

Hom(IdP0
,dI0)

Hom(dP1 ,IdI0
)

Hom(IdP0
,dI−1)

Hom(dP1 ,IdI−1
)

Hom(IdP1
,dI0)

Hom(dP2 ,IdI0
)

Hom(IdP1
,dI−1)

Hom(dP2 ,IdI−1
)

One can then consider short exact sequences of chain complexes

T̂ot(EP,I)• → T̂ot(EP,M,I)• → ΣHomR(M, I•);

T̂ot(EP,I)• → T̂ot(EP,I,N )• → ΣHomR(P•, N).

Using acyclicity of the middle terms (ensured by Exercise 13.5), one obtains a
sequence of isomorphisms of abelian groups, for all n ∈ Z:

ExtnR(M,N) ∼= H−n(T̂ot(EP,I• ) ∼= Ěxt
n

R(M,N).

This concludes the proof of Theorem 11.18.
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Example 13.9. Let us compute ExtZ1 (Z/4,Z/2) and Ěxt
Z
1 (Z/4,Z/2). For the first

computation, we use the projective resolution · · · → 0 → Z ·4→ Z → 0 . . . of Z/2;
applying HomZ(−,Z/2) we obtain the chain complex

. . . 0→ Z/2 ·4→ Z/2→ 0→ . . . ;

all differentials vanish, and in particular we get ExtZ1 (Z/4,Z/2) ∼= Z/2 by consid-
ering the right copy of Z/2 in the last complex.
For the second computation, we can embed Z/2 into the injective module Q/Z by
sending [1]2 7→ [ 1

2 ]Z. The cokernel of this embedding is Q/( 1
2Z), which is isomorphic

to Q/Z as an abstract abelian group, by the map [x] 1
2Z
7→ [2x]Z.

We thus have an injective resolution . . . 0 → Q/Z ·2→ Q/Z → 0 → . . . of Z/2;
applying HomZ(Z/4,−), and recalling that HomZ(Z/4,Q/Z) ∼= Z/4, we obtain the
chain complex

. . . 0→ Z/4 ·2→ Z/4→ 0→ . . . ;

the image of the differential “·2” is the subgroup of Z/4 generated by [2]4; the
cokernel, which is Ěxt(Z/4,Z/2), is thus isomorphic to Z/2.

14. Ext and extensions, projective and injective dimension

In the last lecture we have seen the reason why Tor has this name: for an abelian
group M , we have that TorZ1 (M,Q/Z) is isomorphic to tors(M), the subgroup of
M of torsion elements. Similarly, one can prove the following fact (which is left as
exercise).

Exercise 14.1. Let k ≥ 2 and let M be an abelian group. Then TorZ1 (M,Z/k) is
isomorphic to M [k], i.e. the subgroup of M of k-torsion elements, where m ∈M is
defined to be k-torsion if k ·m = 0.

One can generalise the previous to any PID, here is another exercise.

Exercise 14.2. Let R be a domain and let M be an R-module. Recall Example
7.7. Then TorR1 (M,Frac(R)/R) is isomorphic to tors(M) ⊂ M . If a 6= 0 is an

element of R, then TorR1 (M,R/(a)) is isomorphic to M [a] ⊂M .

We want now to justify the name of Ext.

Definition 14.3. Let R be a ring and let A,C be left R-modules. An extension
of C by A is a triple (B, i, p) consisting of a left R-module B and R-linear maps
i : A→ B and p : B → C such that the following is a SES

A B C.i p

Two extensions (B, i, p) and (B′, i′, p′) are equivalent if there exists an R-linear
isomorphism φ : B → B′ such that the following diagram commutes.

A B C

A B′ C.

i

φ

p

i′ p′

We denote by ext(C,A) the set of equivalence classes of extensions of C by A, where
the ring R is implicit. The equivalence class of (B, i, p) is denoted [B, i, p].
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In the literature it is common only to give an apparently weaker requirement in
Definition 14.3, namely one declares (B, i, p) and (B′, i′, p′) equivalent if there is
an R-linear map φ : B → B′ making the diagram commute: one then uses the
five lemma [Rot, Proposition 2.72] to conclude that the mere fact that φ makes
the diagram commute already implies that φ must be an isomorphism. We will
sometimes use later this fact.

Example 14.4. If (B, i, p) and (B′, i′, p′) are equivalent extensions of C by A, there
may be several maps B → B′ witnessing that. Consider for instance the case in
which R = Z and both (B, i, p) and (B′, i′, p′) are the extension (Z/9, [3 · −]9, [−]3)
of Z/3 by Z/3. Then we can surely choose φ to be IdZ/9, but also the maps ·4 and
·7, which are also automorphisms of Z/9, would make the diagram commute:

Z/3 Z/9 Z/3

Z/3 Z/9 Z/3.

[3·−]9

IdZ/9·4·7

[−]3

[3·−]9 [−]3

Example 14.5. If (B, i, p) and (B′, i′, p′) are split extensions of C by A, i.e. both

A
i→ B

p→ C and A
i′→ B′

p′→ C are split SES of left R-modules, then (B, i, p)
and (B′, i′, p′) are equivalent. Indeed one can choose sections s : C → B of p and
s′ : C → B′ of p′, and thus identify both B and B′ with A ⊕ C ′. The following
diagram then commutes, where all vertical maps are isomorphisms and can thus be
inverted

A B C

A A⊕ C C

A B′ C.

i p

ιA

i⊕s

i′⊕s′

πC

i′ p′

Example 14.6. Consider the following three extensions of Z/3 by Z/3:

Z/3 Z/3⊕ Z/3 Z/3;

Z/3 Z/9 Z/3;

Z/3 Z/9 Z/3;

ι1 π2

[3·−]9 [−]3

[6·−]9 [−]3

We claim that these three extensions are pairwise non-equivalent. The first exten-
sion is qualitatively different from the other two because it is split. To distinguish
the second and the third extension, consider the following procedure:

• take the element [1]3 in the rightmost Z/3;
• lift [1]3 to an element x in the middle group along the surjective map from

the middle group to Z/3;
• multiply x by 3 in the middle group, obtaining an element 3 ·x in the kernel

of the map from the middle group to Z/3;
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• lift 3 · x along the injective map from Z/3 to the middle group, obtaining
an element y ∈ Z/3;
• return y.

No matter which x we choose, the procedure gives as output the element y = [1]3
if we use the second extension, and gives as output y = [2]3 if we use the third
extension; thus the two extensions cannot be equivalent.

The following theorem justifies the name of Ext.

Theorem 14.7. Let R be a ring and let A,C be left R-modules44. There is a
bijection of sets ext(C,A) ∼= Ext1

R(C,A).

14.1. The map ψ. I take from [Rot, 7.2] the notation for the maps ψ and θ.
In this subsection we construct, for fixed left R-modules A and C, a map of sets
ψ : ext(C,A)→ Ext1

R(C,A). The second group is computed as first cohomology of
the cochain complex HomR(P•, A), for a fixed projective resolution (P•, ε) of C.
Given an extension (B, i, p) representing an equivalence class in ext(C,A), we can
write a diagram with exact rows

. . . P2 P1 P0 C 0 . . .

. . . 0 A B C 0 . . .

dP3 dP2 dP1 ε

i p

We can then use that the bottom row is exact, together with the fact that the top
row contains projective modules Pi, to lift the identity of C to a chain map between
P• and the chain complex · · · → 0 → A → B → 0 . . . : here the argument is the
same as the one use to lift an R-linear map to a chain map between projective
resolutions, and we just have to note that we only need exactness in the bottom
row, but we don’t need that all objects different from C in the bottom row be
projective:

. . . P2 P1 P0 C 0 . . .

. . . 0 A B C 0 . . .

dP3 dP2

α2

dP1

α1

ε

α0

i p

We now have that α1 ∈ HomR(P1, A) is a cocycle in the cochain complex HomR(P•, A),
namely HomR(dP2 , A)(α1) = dP2 ◦α1 = 0, as the composition dP2 ◦α1 can be replaced

by the composition P2
α2→ 0 → A. We have therefore that α1 represents a class in

Ext1
R(C,A) = H1(HomR(P•, A)).

We would like to define ψ([B, i, p]) = [α1]; however, there were some choices in-
volved in the previous construction, namely how to lift the identity of C to the
chain map α. Fortunately, again, the fact that all modules Pi are projective suffices
to imply that any two different choices of lifts α and α′ are chain homotopic by

44Of course the theorem also holds for right R-modules
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some chain homotopy s:

. . . P2 P1 P0 C 0 . . .

. . . 0 A B C 0 . . .

dP3

s2

dP2

α′2α2
s1

dP1

α′1α1
s0

ε

α′0α0
0 0

i p

In particular we get an equality α1 − α′1 = dP1 ◦ s0 = HomR(dP1 , A)(s0), so that
the difference α1 − α′1 is a coboundary in the cochain complex Hom(P•, A), and in
particular [α1] = [α′1] ∈ Ext1

R(C,A).
Finally, if we replace (B, i, p) by an equivalent extension (B′, i′, p′) of C by A, we

can choose an identification of the exact sequences → 0 → A
i→ B

p→ C → 0 . . .

and → 0→ A
i′→ B′

p′→ C → 0 . . . restricting to the identity of A and of C, and use
the “same” α0 and the same α1 to lift the identity of C: here “same” means same
up to identification, but same means same on the nose.

14.2. The map θ. We want now to construct a map θ : Ext1
R(C,A) → ext(C,A).

Let therefore α1 ∈ HomR(P1, A) be a cocycle representing a class [α1] ∈ Ext1
R(C,A).

Then α1 : P1 → A vanishes on the image of dP2 : P2 → P1 and thus induces a map
ᾱ1 : P1/Im(dP2 )→ A. Similarly, dP1 induces a map d̄P1 . We obtain a diagram, whose
first row is a SES

P1/Im(dP2 ) P0 C

A C

d̄P1

ᾱ1

ε

We now define B to be the push-out of A and P0 along P1/Im(dP2 ) with the maps
ᾱ1 and d̄P1 , i.e. B is the colimit (in the category of left R-modules) of the diagram

P1/Im(dP2 ) P0

A .

d̄P1

ᾱ1

Concretely, B is the quotient of A ⊕ P0 by the submodule spanned by elements
of the form ((x)ᾱ1,−(x)d̄P1 ) for varying x ∈ P1/Im(dP2 ). The push-out, as every
colimit, is equipped with maps from the objects of the diagram we took the colimit
of; in particular we denote by i : A→ B and by α0 : P0 → B two45 of the structure
maps of the push-out. Using the universal property of the push-out, we can define
a map p : B → C by declaring the maps 0: A → C and ε : P0 → C, which in
fact satisfy the property d̄P1 ◦ ε = ᾱ1 ◦ 0, as both composition are the zero map

45Strictly speaking, there is a third structure map, namely the map P1/Im(dP2 )→ B; this can

however be recovered from either i or α0.
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P1/Im(dP2 )→ C. We thus obtain a commutative diagram

P1/Im(dP2 ) P0 C

A B C

d̄P1

ᾱ1 α0

ε

i p

We already know that the top row is a SES, so let us check that also the bottom
row is a SES:

• since ε = α0 ◦ p is surjective, also p must be surjective;
• the composition i◦p : A→ C is the zero map by definition of p; viceversa, let

(x, y) ∈ A⊕P0 and suppose that the corresponding element46 (x)i+(y)α0 ∈
B is in the kernel of p: this implies that (y)ε = 0, but then exactness of the
top row implies that there is z ∈ P1/Im(dP2 ) such that (z)d̄P1 = y; it follows
that (x)i+ (y)α0 = (x− (z)ᾱ1)i is in the image of i;
• the map i is injective: if x ∈ A is such that (x)i = 0, then the element

(x, 0) ∈ A ⊕ C projects to zero in the quotient B, hence it is of the form
((y)ᾱ1,−(y)d̄P1 ) for some y ∈ P1/Im(dP2 ); using injectivity of d̄P1 we con-
clude that y = 0 and hence x = (y)ᾱ1 = 0.

We would like to define θ([α1]) = [B, i, p]; before doing that, we prove the following
lemma.

Lemma 14.8. Let (B′, i′, p′) be another extension of C by A and let α′0 : P0 → B′

be a map such that the following diagram commutes

P1/Im(dP2 ) P0 C

A B′ C.

d̄P1

ᾱ1 α′0

ε

i′ p′

Then (B′, i′, p′) is equivalent to the extension (B, i, p) constructed above.

Proof. We use again the universal property of B as a push-out: we can define a
map φ : B → B′ by declaring the map i′ : A → B′ and α′0 : P0 → B: indeed we
have ᾱ1 ◦ i′ = d̄P1 ◦ α′0 by the assumed commutative diagram. We then obtain a
commutative diagram

A B C

A B′ C

i

φ

p

i′ p′

and using the five lemma [Rot, Proposition 2.72] we conclude that φ is an isomor-
phism, hence (B′, i′, p′) and (B, i, p) are equivalent extensions. �

In other words, the hypotheses of Lemma 14.8 imply that B′, together with the
structure maps i′, α′0 and i′ ◦ ᾱ1 = α′0 ◦ dP1 , is another model for the push-out of A
and P0 along P1/Im(dP2 ) and the maps ᾱ1 and d̄P1 .
We can now give a safer definition of θ: we first define θ on cocycles and let
θ(α1) ∈ ext(C,A) be the unique equivalence class of extensions (B′, i′, p′) of C
by A for which there exists some α′0 such that the hypotheses of Lemma 14.8 are

46A generic element of B can be represented in this way.
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satisfied. The existence of such a class is given by the example of (B, i, p) together
with α0, and the uniqueness is given by Lemma 14.8 itself.
Does θ(α1) ∈ ext(C,A) really only depend on [α1], or does it depend, as it would
seem from the construction, on the cocycle α1 we used? In fact, it only depends on
the cohomology class! If α′1 is another cocycle such that [α1] = [α′i] ∈ Ext1

R(C,A),
then there is s0 ∈ Hom(P0, A) with α′1 = α1 + HomR(dP1 , A)(s0) = α1 + dP1 ◦ s0;
we then also have an equality ᾱ′1 = ᾱ1 + d̄P1 ◦ s0, and the following diagram is
commutative

P1/Im(dP2 ) P0 C

A B C.

d̄P1

ᾱ1+d̄P1 ◦s0 α0+s0◦i

ε

i p

By Lemma 14.8 we obtain that B, together with i, α0 +s0 ◦ i and a third map from
P1/Im(dP2 ) which now I don’t specify, is also a model for the push-out of A and
P0 along P1/Im(dP2 ) and the maps ᾱ′1 and d̄P1 ; thus (B, i, p) also represents θ(α′1),
by the definition of θ on cocycles that we gave. It follows that θ(α1) = θ(α′1), and
hence θ descends to a function Ext1

R(C,A)→ ext(C,A), that we still call θ.

Exercise 14.9. Check that θ and ψ are inverse bijections.

14.3. Baer sum. You may have noticed that Theorem 14.7 establishes a bijection
between the sets ext(C,A) and Ext1

R(C,A), the second of which is however also an
abelian group; we can then transfer the abelian group structure on Ext1

R(C,A) to
some abelian group structure on ext(C,A).

Example 14.10. The following is a commutative diagram with SES as rows

P1/Im(dP2 ) P0 C

A A⊕ C C.

d̄P1

0

ε

ε◦ιC

ιA πC

It follows that the class of the split extension [A ⊕ C, ιA, πC ] (which by Example
14.5 is also the class of any other split extension of C by A) corresponds, along the
bijection Ext1

R(C,A) ∼= ext(C,A), to the zero class [0] ∈ Ext1
R(C,A).

In the following we give an alternative description of the sum operation on ext(C,A);
we will however not prove that the following assignment ext(C,A) × ext(C,A) →
ext(C,A) corresponds to the usual sum on Ext1

R(C,A) along the bijection: the
proof of this is for instance in [Rot, 7.2.1].
Let (B, i, p) and (B′, i′, p′) be extensions of C byA, representing classes in ext(C,A).
The first idea to combine the two extension into their “sum” is to take their direct
sum: we however obtain a SES

A⊕A B ⊕B′ C ⊕ Ci⊕i′ p⊕p′

whose external terms are A⊕A and C ⊕C rather than A and C. We now use the
following two tricks.
The first trick is to consider the diagonal copy of C contained in C ⊕ C, which is
isomorphic, as a left R-module, to the product C ×C: more precisely, we consider
the map ∆: C → C×C given by the universal property of the product, by declaring
twice the map IdC : C → C; ∆ is injective, and we consider the submodule ∆(C) ⊂
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C ⊕C. We can then define (B⊕B′)∆ ⊂ B⊕B′ as the preimage (p⊕ p′)−1(∆(C));
note that the image of A⊕A along i⊕ i′ is contained in (B ⊕B′)∆, for the simple
reason that the composition (p⊕ p′) ◦ (i⊕ i′) is the zero map, having in particular
image inside ∆(C). We thus get a SES

A⊕A (B ⊕B′)∆ ∆(C) ∼= C
i⊕i′ p⊕p′

The second trick is the “dual” trick. There is a map ∇ : A ⊕ A → A given by
the universal property of the direct sum, declaring twice the identity of A; ∇ is
surjective, and we consider the two (isomorphic) submodules ker∇ ⊂ A ⊕ A and,
correspondingly, (i ⊕ i′)(ker(∇)) ⊂ (B ⊕ B′)∆. We let (B ⊕ B′)∆

∇ be the quotient
(B ⊕B′)∆/(i⊕ i′)(ker(∇)); we obtain a SES

A⊕A/ ker(∇) ∼= A (B ⊕B′)∆
∇ ∆(C) ∼= C.

i⊕i′ p⊕p′

The latter is an extension of C by A, and it turns out to represent [B, i, p]+[B′, i′, p′]
under the transfered abelian group structure on ext(C,A) coming from Ext1

R(C,A).

14.4. Naturality of ext. Recall that Ext1
R : RModop � RMod → ZMod is a bi-

functor; using the bijections of abelian groups ext(C,A) ∼= Ext1
R(C,A), one can

tautologically define a bifunctor ext : RModop � RMod→ ZMod which is naturally
isomorphic to Ext1

R. In the following we describe how ext looks like.
We fix left R-modules A,A′, C, C ′ and R-linear maps f : A → A′ and g : C → C ′.
We content ourselves with giving a description of the maps ext(g,A) : ext(C ′, A)→
ext(C,A) and ext(C, f) : ext(C,A)→ ext(C,A′) corresponding, under the identifi-
cation of bifunctors Ext1

R
∼= ext, to Ext1

R(g, IdA) and Ext1
R(IdC , f).

Exercise 14.11. After finishing to read this subsection, prove of all following
statements:

• the maps of sets ext(g,A) and ext(C, f) are well-defined;
• they correspond, under the identifications, to Ext1

R(g, IdA) and Ext1
R(IdC , f);

in particular they are Z-linear maps, and belong to a bifunctor

ext : RModop � RMod→ ZMod.

We start describing a map ext(C, f) : ext(C,A) → ext(C,A′). Given an extension
(B, i, p) of C by A, we consider the push-out B′ of the diagram

A B

A′ ,

i

f

and we denote by i′ : A′ → B′ and by f̃ : B → B′ two of the structure maps of the
push-out. This is very similar to what we did in the construction of θ in Subsection
14.2. We use the universal property of push-out and define a map p′ : B′ → C by
declaring 0: A′ → C and p : B → C; thus we obtain a commutative diagram, whose
first row is a SES

A B C

A′ B′ C,

i

f f̃

p

i′ p′
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and by a simple diagram chasing one can show that also the second row is a SES.
We then have ext(C, f) : [B, i, p] 7→ [B′, i′, p′].
The description of the map ext(g,A) : ext(C ′, A) → ext(C,A) is dual. Given an
extension (B′, i′, p′) of C ′ by A, we consider the pull-back B of the following diagram

C

B′ C ′.

g

p′

Concretely, the pull-back can be described as the submodule of B′ ⊕ C containing
all couples (x, y) such that (x)p = (y)g. We denote by g̃ : B → B′ and p : B → C
two of the structure maps of the pull-back. We can then use the universal property
of pull-back and define a map i : A → B by declaring 0: A → C and i′ : A → B′;
thus we obtain a commutative diagram, whose second row is a SES

A B C

A B′ C ′,

i

g̃

p

g

i′ p′

and by a simple diagram chasing one can show that also the second row is a SES.
We then have ext(g,A) : [B′, i′, p′] 7→ [B, i, p].

14.5. Yoneda sequences and cohomology product. For two left R-modules A
and C we have interpreted Ext1

R(C,A) as the set of equivalence relations of SES
A→ B → C; can we do something similar for ExtnR(C,A) for n ≥ 2?

Definition 14.12. A Yoneda sequence from A to C of length n is an exact sequence
of left R-modules of the form

. . . 0 A Bn−1 Bn−2 . . . B0 C 0 . . .i dBn−1 dBn−2 dB1 p

We denote by (B•, d
B , i, p) a generic Yoneda sequence.

We consider on Yoneda sequences the smallest equivalence relation spanned by the
following basic equivalences: we regard (B•, d

B , i, p) and (B′•, d
B′ , i′, p′) to be “basic

equivalent” if there exists a commutative diagram as follows, for suitable R-linear
maps φ0, . . . , φn−1:

. . . 0 A Bn−1 Bn−2 . . . B0 C 0 . . .

. . . 0 A B′n−1 B′n−2 . . . B′0 C 0 . . .

i

φn−1

dBn−1

φn−2

dBn−2 dB1

φ0

p

i′ dB
′

n−1 dB
′

n−2 dB
′

1 p′

You will note that we do not require the maps φi to be isomorphisms, and in partic-
ular the relation spanned by the above condition is not automatically symmetric.
Nevertheless, we consider the smalles equivalence relation on Yoneda sequences
which keeps track of the previous basic relations.
One can in fact characterise47 as follows the equivalence relation: (B•, d

B , i, p) and

(B′•, d
B′ , i′, p′) are equivalent if and only if there exists a third Yoneda sequence

47We do not give here a proof of this fact.
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(B′′• , d
B′′ , i′′, p′′) and a commutative diagram

. . . 0 A Bn−1 Bn−2 . . . B0 C 0 . . .

. . . 0 A B′′n−1 B′′n−2 . . . B′′0 C 0 . . .

. . . 0 A B′n−1 B′n−2 . . . B′0 C 0 . . .

i dBn−1 dBn−2 dB1 p

i′′

φn−1

φ′n−1

dB
′′

n−1

φn−2

φ′n−2

dB
′′

n−2 dB
′′

1

φ0

φ′0

p′′

i′ dB
′

n−1 dB
′

n−2 dB
′

1 p′

Let extn(C,A) denote the set of equivalence classes [B•, d
B , i, p] of Yoneda se-

quences of length n from A to C. In the previous discussion we have argued that
ext1(C,A), which is defined precisely as ext(C,A), is in natural bijection with
Ext1

R(C,A).

Example 14.13. Let (B•, d
B , i, p) be a Yoneda sequence of length n from A to C,

and let (P•, ε) be a projective resolution of C. Then we can lift the identity of C
to a chain map from the complex P• to the complex . . . 0→ A→ B• → 0 . . . :

. . . Pn+1 Pn Pn−1 Pn−2 . . . P0 C 0 . . .

. . . 0 A Bn−1 Bn−2 . . . B0 C 0 . . .

dPn+1 dPn

αn

dPn−1

αn−1

dPn−2

αn−2

dP1 ε

α0

i dBn−1 dBn−2 dB1 p

A simple diagram chasing shows that αn ∈ HomR(Pn, A) is a cocycle of the cochain
complex HomR(P•, A).
It can in fact be proved that for all n ≥ 2 the sets extn(C,A) and ExtnR(C,A) are
in natural bijection, by the assignment [B•, d

B , i, p] 7→ [αn].

The description of Ext with Yoneda sequences allows us to do one further step48.
Indeed, let A,C,D be three left R-modules and let (B•, d

B , i, p) and (B′•, d
B′ , i′, p′)

be Yoneda sequences of lengths n, n′ ≥ 1 respectively, from A to C and from C to
D respectively. We can define a Yoneda sequence of length n+ n′ from A to D as
follows

. . . 0 A Bn−1 . . . B0 B′n′−1 . . . B′0 D 0 . . .i dBn−1 dB1 p◦i′ dB
′

n′−1 dB
′

1 p′

This assignment descends to a product map

extn
′
(D,C)× extn(C,A)→ extn+n′(D,A).

Using push-outs and pull-backs in a similar way as in Subsection 14.4, one can also
define product maps extn

′
(D,C)×extn(C,A)→ extn+n′(D,A) when either n or n′

is zero. One can check that these product maps are Z-bilinear, and also that they
are associative: given four R-modules A,C,D,E, any order of composition gives
rise to the same map

extn
′′
(E,D)× extn

′
(D,C)× extn(C,A)→ extn+n′+n′′(E,A).

48There are also other, and probably more effective ways to define the product on Ext, this
seemed to me to be the most intuitive
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Finally, when n = n′ = 0, a product map extn
′
(D,C)×extn(C,A)→ extn+n′(D,A)

is the same as a product map HomR(D,C)×HomR(C,A)→ HomR(D,A), and in
this special case we have a very natural definition to choose, namely the composition
of R-linear maps! We thus obtain for all n′ and n product maps extn

′
(D,C) ×

extn(C,A) → extn+n′(D,A), which are Z-bilinear and satisfy associativity. We
conclude with an example.

Example 14.14. Let R be an associative ring and let M be a left R-module. Recall
that HomR(M,M) is an associative ring, by considering composition of R-linear
maps. In fact, also

Ext∗R(M,M) :=
⊕
n≥0

ExtnR(M,M)

has a natural structure of (graded) associative ring; the component in degree 0 is
the sub-ring Ext0

R(M,M), and it is isomorphic as a ring to HomR(M,M).

14.6. Global dimensions. Recall Definition 12.5. There is a dual definition, using
injective resolutions.

Definition 14.15. Let R be a ring and M be a left R-module. The injective
dimension of M over R, denoted id(M), is the minimum ` ≥ 0 such that M admits
an injective resolution over R of length `; if such an ` does not exist, we say that
M has infinite injective dimension.
The left, injective global dimension of the ring R, denoted lidim(R), is the supre-
mum of all injective dimensions of all left R-modules. The right injective global
dimension is denoted ridim(R) and is defined in an analogous way, after defining
the injective dimension of right R-modules.

In general, for an abelian category C, if C has enough projectives one can define
the projective global dimension pdim(C), and if C has enough injectives one can
define the injective global dimension idim(C). The abelian categories RMod and
ModR are defined using the same ring R, but they are in fact different abelian
categories, so we should not expect, for instance, a relation between their projective
global dimensions. In fact there exist rings R for which rpdim(R) = pdim(ModR)
is different from lpdim(R) = pdim(RMod). Necessarily, such R must be non-
commutative!
In the following we will focus, whenever a choice can be made, on left R-modules.

Example 14.16. For a left R-module M we have pd(M) = 0 iff M is projective,
and id(M) = 0 iff M is injective, almost by definition. It is not difficult to find
examples of R and M such that M is projective but not injective, or viceversa.
Hence, in general, for a ring R and a left R-module M we have pd(M) 6= id(M).

In spite of the previous example, we will prove the following theorem.

Theorem 14.17. Let R be an associative ring. Then lpdim(R) = lidim(R) and
rpdim(R) = ridim(R).49.

Note that the theorem also predicts that if either lpdim(R) or rpdim(R) is infinite,
then so is the other. In order to prove the theorem, we will in fact prove the
following proposition.

49In fact, if C is an abelian category with enough injectives and projectives, one can prove that
pdim(C) = idim(C).
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Proposition 14.18. Let n ≥ 0 be an integer and R a ring. Then the following are
equivalent:

(1) lpdim(R) ≤ n;
(2) Extn+1

R (M,N) = 0 for all left R-modules M,N ;
(3) lidim(R) ≤ n.

Thanks to Theorem 11.18, the condition (2) is more symmetric in the words “in-
jective” and “projective” than the other two conditions (1) and (3), and we expect
that any proof of the equivalence of (1) and (2) can be adapted to a proof of the
equivalence of (2) and (3). In fact we will focus on the proof of the equivalence of
(1) and (2), so we will focus on lengths of projective resolutions.

Proof that (1) implies (2) in Proposition 14.18. Let n and R satisfy lpdim(R) ≤ n,
and let M,N be any left R-modules. Then M admits a projective resolution P• of
length at most n, and we can compute Extn+1

R (M,N) as the n + 1th cohomology
group of the cochain complex HomR(P•, N).
This cohomology group is supposed to be a subquotient of the abelian group
HomR(Pn+1, N), which is assumed to be zero. �

Exercise 14.19. Adapt the previous argument to prove that (3) implies (2), by
using an injective resolution of N instead of a projective resolution of M .

The next ingredient we will need towards a proof of Proposition 14.18is Schanuel’s
Lemma.

Lemma 14.20 (Schanuel’s Lemma). Let M be a left R-module, suppose that we
are given two SES of left R-modules

K P M

K ′ P ′ M

i p

i′ p′

with P and P ′ projective. Then there is an isomorphism of left R-modules K⊕P ′ ∼=
K ′ ⊕ P . In particular, K is projective if and only if K ′ is projective.

Proof. Consider the R-linear map p⊕ p′ : P ⊕ P ′ → M : we will focuse on proving
that K ′ ⊕ P is isomorphic to ker(p⊕ p′); the proof that K ⊕ P ′ is also isomorphic
to ker(p ⊕ p′) is completely analogous, and the two isomorphisms yield the first
statement. The second statement follows from the fact that a direct summand of a
projective module is projective.
Use that P is projective to construct a map φ making the following diagram com-
mute

K P M

K ′ P ′ M

i p

φ

i′ p′

Define now a map ψ : P ⊕K ′ → ker(p⊕ p′) by declaring ψ|K′ : x 7→ (0, x), and by
declaring ψ|P : y 7→ (y,−(y)φ). The map ψ is surjective: every element (z, w) ∈
ker(p ⊕ p′) can be written as (z,−(z)φ) + (0, (z)φ − w), where (z)φ − w ∈ P ′

is in the kernel of p′, hence in the image of i′. The map ψ is also injective: if
(y, x)ψ = (y,−(y)ψ + x) = 0, then y = 0, and then also x = 0. �
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Exercise 14.21. Prove the dual Schanuel’s Lemma: if M → I → K and M →
I ′ → K ′ are SES’s with I and I ′ injective modules, then I ⊕K ′ ∼= I ′ ⊕K, and in
particular K is injective if and only if K ′ is injective.

Schanuel’s Lemma has the following striking consequence. Suppose that we want
to compute pd(M) for some left R-module M ; then the following algorithm returns
pd(M), no matter what choices are made during it:

• if M is projective, return 0 and stop the algorithm;
• if M is not projective, choose any surjective map ε : P0 → M from any

projective module P0, and consider ker(ε); if ker(ε) is projective, return 1
and stop the algorithm;
• if also ker(ε) is not projective, choose any surjective map dP1 : P1 → ker(ε)

from any projective module P1, and consider ker(dP1 ); if ker(dP1 ) is projec-
tive, return 2 and stop the algorithm;
• continue in this fashion, until for the first time you observe that ker(dPn ) : Pn →
Pn−1 is projective; then return n+ 1;
• if the algorithm never ends, return ∞.

In other words, there is no particularly clever way to shorten the length of a pro-
jective resolution of a module: if P• is a projective resolution of M , Schanuel’s
Lemma, strictly speaking, ensures that if a run of the algorithm returns 1, then
any run of the algorithm returns 1.

Definition 14.22. Two left R-modules M and M ′ are projectively equivalent if
there are projective modules P and P ′ with M ⊕ P ′ ∼= M ′ ⊕ P .

Note that if M ⊕ P ′ ∼= M ′ ⊕ P and M ′ ⊕ Q′′ ∼= M ′′ ⊕ Q′, then M ⊕ P ′ ⊕ Q′′ ∼=
M ′⊕P⊕Q′′ ∼= M ′′⊕Q′⊕P , so Definition 14.22 gives in fact an equivalence relation
on left R-modules.
Schanuel’s Lemma can be generalised to the following statement: if M and M ′

are projectively equivalent and if K → P → M and K ′ → P ′ → M ′ are SES
with P and P ′ projective, then K and K ′ are also projectively equivalent: indeed
we may first find an isomorphism M ⊕ Q′ ∼= M ′ ⊕ Q, then consider the SESs
K → P ⊕Q′ →M ⊕Q′ and K ′ → P ′ ⊕Q→M ′ ⊕Q, then conclude by Schanuel’s
Lemma that K ⊕ P ′ ⊕Q ∼= K ′ ⊕ P ⊕Q′.
After these considerations, consider two parallel runs of the above algorithm starting
from the same left R-module M : at each step we obtain projectively equivalent
modules, and both runs stop, at the same time, the first time that two kernels of
surjective maps are (both) in the projective equivalence class of projective modules.

Exercise 14.23. Describe a dual algorithm returning the injective dimension of
a left R-module N , by iteratively injecting into an injective R-module, taking the
cokernel, and asking whether the latter is an injective module or not.

We will finish the proof of Proposition 14.18, and hence of Theorem 14.17, next
time.

15. Global dimension, weak dimension, Hilbert’s syzygy theorem

15.1. End of proof of Proposition 14.18. We start by completing the proof of
Proposition 14.18. We focus on the proof that (1) implies (2) and on left R-modules.
The first ingredient we need is the following characterisation of projective modules.
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Lemma 15.1. Let M be a left R-module. Then M is projective if and only if
Ext1

R(M,N) = 0 for all N ∈ RMod.

Proof. Suppose first M projective, i.e. HomR(M,−) : RMod → ZMod is an exact
(covariant) functor. Then Ext1

R(M,−) = R−1(HomR(M,−)) is the zero functor,
by an adaptation of Example 10.21 to right derived functors. In fact all functors
ExtnR(M,−) for n 6= 0 are the zero functor.
Conversely, suppose that M is a left R-module with Ext1

R(M,−) being the zero
functor. In order to prove that HomR(M,−) is an exact functor (and hence
M is projective) it suffices to show that HomR(M,−) maps SESs in RMod to

SESs in ZMod (see Proposition 4.25. Let therefore N ′
i→ N

p→ N ′′ be a SES in

RMod. By Theorem 11.8, and recalling that Ext0
R(−,−) is naturally isomorphic to

HomR(−,−), we have a long exact sequence of cohomology groups featuring the
following segment

. . . 0→ HomR(M,N ′)→ HomR(M,N)→ Hom(M,N ′′)→ Ext1
R(M,N ′)→ . . .

By hypothesis onM , the group Ext1
R(M,N ′) vanishes; it follows that HomR(M,N ′)→

HomR(M,N) → Hom(M,N ′′) is a SES in ZMod, which is what we wanted to
show. �

Exercise 15.2. Prove the dual lemma: M is injective if and only if Ext1
R(N,M) =

0 for all N ∈ RMod.

We are now ready to prove another implication in Proposition 14.18.

Proof that (2) implies (1) in Proposition 14.18. Let R be a ring, n ≥ 0 and assume
that Extn+1

R is the zero bifunctor RModop � RMod → ZMod. We want to prove
lpdim(R) ≤ n. By Lemma 15.1, in the case n = 0 we have that the condition
“Extn+1

R is the zero bifunctor” implies that every left R-module is projective
Fix M ∈ RMod. We are going to prove first a version of “(2) implies (1)” that
only focuses on M : we are going to prove that if ExtR(M,−) is the zero functor

RMod→ ZMod, then pd(M) ≤ n. Once this is done, letting M vary we immediately
obtain “(2) implies (1)”.
Let (P•, ε) be a projective resolution of M , and for all i ≥ 1 define50 Ki to be
ker(dPi ) ⊆ Pi; define also K0 = ker(ε); the situation is represented in the following
diagram, where the row is exact:

Kn+1 Kn Kn−1 . . . K1 K0

. . . Pn+1 Pn Pn−1 . . . P1 P0 M . . .
dPn+2 dPn+1 dPn dPn−1 dP2 dP1 ε

Our aim is to show that M admits a projective resolution of length at most n; to
this purpose, it suffices to show that Kn−1 is a projective module: then we can

consider . . . 0 → Kn−1 ↪→ Pn−1

dPn−1→ . . .
dP1→ P0 → 0 . . . as a length-n projective

resolution of M . In fact, the argument from the last lecture involving Schanuel’s
Lemma and the algorithm implies that this is our only hope: if Kn−1 fails being
projective, then it would just be false that pd(M) ≤ n.

50The word “syzygy” is often used in the literature to refer to the modules Ki; the word was
already used in astronomy with the meaning of “conjunction” (when three or more bodies are

aligned), when Hilbert imported it into mathematics as an alternative to the word “relation”.
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Remember that Ki is also the image of the map dPi+1: we obtain the following nice

fact: for each i ≥ 0 the chain complex . . .
dPi+3→ Pi+2

dPi+2→ Pi+1 → 0 → 0 → 0 . . . ,
with Pi+1 put in degree 0, is a projective resolution of Ki, with augmentation
dPi+1 : Pi+1 → Ki. The situation is represented in the following diagram, in which
sequences as the red one are exact

Kn+1 → 0 Kn → 0 Kn−1 → 0 . . . K1 → 0 K0 → 0

. . . Pn+1 Pn Pn−1 . . . P1 P0 M . . .

dPn+2

dPn+2

dPn+1

dPn+1

dPn

dPn dPn−1

dP2

dP2

dP1

dP1 ε

In particular the following row is exact, and represents a projective resolution of
Kn−1 together with its augmentation:

. . . Pn+2 Pn+1 Pn Kn−1 0 . . .
dPn+3 dPn+2 dPn+1 dPn

To prove thatKn−1 is projective, we use Lemma 15.1 and check that Ext1
R(Kn−1, N) =

0 for any left R-module N . We have a projective resolution of Kn−1 ready, so let us
just apply the functor HomR(−, N) to it: we obtain the following chain complex,
where HomR(Pn, N) lies in degree 0, and (homological) degrees decrease from left
to right

. . . 0 HomR(Pn, N) HomR(Pn+1, N) HomR(Pn+2, N) . . .
HomR(dPn+1,N) HomR(dPn+2,N) HomR(dPn+3,N)

The group Ext1
R(Kn−1, N) can be computed as ker(HomR(dPn+2))/Im(HomR(dPn+1)).

Notice that also Extn+1
R (M,N) can be computed as the very same quotient: the

reason why this happens is that the triple “Pn+2 → Pn+1 → Pn” occurs both in
the original projective resolution of M , and in the obtained projective resolution
of Kn−1. We assumed that Extn+1

R (M,−) is the zero functor, so we deduce that

Ext1
R(Kn−1, N) is zero for all left R-modules N , which implies by Lemma 15.1 that

Kn−1 is projective, which in turn implies pd(M) ≤ n. �

Exercise 15.3. Let M be a left R-module and let (I•, η) be an injective res-
olution of M . Define Ki = coker(di−1

I : Ii−1 → Ii) for all i ≥ 1, and define

K0 = coker(η : M → I0). For n ≥ 0 prove that the functor Extn+1
R (−,M) is the

zero functor if and only if Kn−1 is an injective module. Deduce that (2) implies
(3) in Proposition 14.18.

With the discussion of this subsection the proof of Theorem 14.17 is complete: we
will henceforth call “left global dimension of R” the number lpdim(R) = lidim(R),
which may be infinite, and denote it ldim(R) for simplicity. Similarly we denote by
rdim(R) = rpdim(R) = ridim(R) the right global dimension of R.

15.2. An application of Baer’s criterion. Recall Proposition 5.14: we can use
it to give a formula computing the left global dimension.

Theorem 15.4 (Auslander). Let R be a ring. Then ldim(R) can be computed
as the supremum of the set {pd(R/J)}, where J ranges among left ideals of R.
In other words, 1-generated/cyclic left R-modules suffice to detect the left global
dimension of R (using the definition as left projective dimension of R).
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Proof. It is clear that sup {pd(R/J) | J ⊆ R left ideal} ≤ sup {pd(M) |M ∈ RMod},
and in particular if the first is infinite, then so is the second and hence the two agree.
Assume now n := sup {pd(R/J) | J ⊆ R left ideal} is finite. Let M be a left R-
module; for all J ⊂ R we have Extn+1

R (R/J,M) = 0, as can be checked by choosing
a projective resolution of R/J of length at most n (which exists by definition of n).
Let now (I•, η) be instead an injective resolution of M , and let Kn−1 be as in Exer-
cise 15.3: we can identify the groups Extn+1

R (R/J,M) and Ext1
R(R/J,Kn−1) by con-

sidering the short piece of chain complex HomR(R/J, In) → HomR(R/J, In+1) →
HomR(R/J, In+2) and computing the homology group in the middle degree. We
conclude that Ext1

R(R/J,Kn−1) = 0 for all left ideals J ⊆ R.
We then write the long exact sequence of ExtR(−,Kn−1)-groups associated with
the SES of left R-modules J ↪→ R→ R/J , for all left ideals J ⊆ R: it begins with

. . . 0 HomR(R/J,Kn−1) HomR(R,Kn−1) HomR(J,Kn−1) Ext1
R(R/J,Kn−1) . . .

Since Ext1
R(R/J,Kn−1) = 0 for all J , we deduce that the map HomR(R,Kn−1)→

HomR(J,Kn−1) (induced by restriction of functions from R to J) is surjective; in
other words, every R-linear map J → Kn−1 can be extended to an R-linear map
R → Kn−1, for all left ideals J ⊆ R. This is precisely Baer’s criterion to check
that Kn−1 is an injective left R-module: we conclude that Kn−1 is an injective left
R-module.
Since Kn−1 is injective, we obtain an injective resolution of M of length n:

. . . 0 I0 . . . In−1 Kn−1 0 . . .
d0I dn−1

I

It follows that id(M) ≤ n; since the arguments works for all M ∈ RMod, we
conclude that lidim(R) ≤ n, and now we use that lidim(R) is one of the two
ways to compute ldim(R). The other way is sup {pd(M) |M ∈ RMod}, and so (re-
calling how n was defined) we obtain the inequality sup {pd(M) |M ∈ RMod} ≤
sup {pd(R/J) | J ⊆ R left ideal}, which together with the inequality from the be-
ginning of the proof concludes the proof.

�

15.3. A glimpse into the flat dimension. Proposition 14.18 uses the vanishing
of Extn+1

R , as a bifunctor RModop � RMod → ZMod, as a criterion for the upper
bounds lpdim(R) ≤ n and lidim(R) ≤ n. Can we write a similar proposition

involving the vanishing of TorRn+1 instead?

Definition 15.5. Let M be a left R-module. The flat dimension of M , denoted
fd(M), is the infimum of lengths of flat resolutions of M . The left flat dimension51

of R, denoted lfdim(R), is the supremum of fd(M) for M ∈ RMod.
Similarly, define the flat dimension of right R-modules, and the right flat dimension
rfdim(R).

We have the following lemma, which parallels Lemma 15.1, and whose proof is left
as exercise.

Lemma 15.6. Let N be a left R-module. Then N is flat if and only if TorR1 (M,N) =
0 for all M ∈ ModR. Similarly, let M be a right R-module. Then M is flat if and
only if TorR1 (M,N) = 0 for all M ∈ ModR.

51This is called “weak” dimension in Rotman and in the literature in general, but let me use
a terminology which is parallel to what we already did.
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We can now mimick the arguments of the previous subsection/last lecture. In the
following it is important to notice that we do not rely on an analogue of Schanuel’s
Lemma for flat modules, especially because such analogue is not available.

Lemma 15.7. Let M be a right R-module and n ≥ 0; the following are equivalent

(i) fd(M) ≤ n;

(ii) TorRn+1(M,N) = 0 for all left R-modules N .

A similar statement holds with left and right modules swapped.

Proof. First, assume (i). Recall that for a left R-module N we can compute the

abelian group TorRn+1(M,N), up to isomorphism, by choosing a flat resolution of
M and tensoring it with N . By (i), there is a flat resolution F• of M of length
≤ n; hence the chain complex F• ⊗R N vanishes in degree n + 1, and this forces
the n+ 1th homology group, i.e. TorRn+1(M,N), to vanish.
Now assume (ii). If n = 0, (ii) and Lemma 15.6 immediately imply that M is
flat, and hence M admits θ0(M)• as flat resolution. Suppose now (ii) holds and
n ≥ 1. Let (F•, ε) be a flat resolution of M , and similarly as in the previous
subsection, define Kn−1 = ker(dFn−1 : Fn−1 → Fn−2) (in the case n = 1, define

K0 = ker(ε : F0 →M)). Note that . . .
dFn+2→ Fn+1

dFn+1→ Fn → 0 . . . is a flat resolution
of Kn−1; if N is any left R-module, the homology group computed in the middle of
the piece of chain complex Fn+2⊗RN → Fn+1⊗RN → Fn⊗RN can be identified
with both TorR1 (Kn−1, N) and TorRn+1(M,N); by (ii) the latter vanishes, hence the
former vanishes, for all N ∈ RMod. We can now apply Lemma 15.6 and conclude
that Kn−1 is flat; as a consequence, the following is a flat resolution of M of length
n, witnessing that fd(M) ≤ n:

. . . 0 0 Kn−1 Fn−1 . . . F0 0 . . .
dFn−1 dF1

�

Proposition 15.8. Let n ≥ 0 be an integer and R a ring. Then the following are
equivalent:

(1) lfdim(R) ≤ n;

(2) TorRn+1(M,N) = 0 for all right R-modules M and left R-modules N ;
(3) rfdim(R) ≤ n.

Proof. The equivalence of (1) and (2) is a straightforward consequence of Lemma
15.7, by letting M vary among right R-modules. The equivalence of (2) and (3) is
proved by a symmetric argument, swapping the roles of left and right modules. �

We can now derive from Proposition 15.8 the following theorem, in a way that is
completely analgous to how we derived Theorem 14.17 from Proposition 14.18.

Theorem 15.9. Let R be an associative ring. Then lfdim(R) = rfdim(R).

At first glance it might seem strange that in the case of flat dimensions we manage to
prove that the left and the right versions are equal, whereas in the case of projective
dimensions we couldn’t. This is essentially a consequence of the fact that −⊗R −
combines left and right R-modules, whereas HomR(−,−) does not. From now on
we will denote by fdim(R) the common value lfdim(R) = rfdim(R).
We can also compare Theorem 15.4 with the following theorem, which is [Rot,
Theorem 8.25], and which we leave without proof.
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Theorem 15.10. Let R be a ring; then we have

fdim(R) = sup {fd(R/J) | J ⊆ R left ideal} = sup {fd(R/J) | J ⊆ R right ideal} ,

where in the first sup we consider flat dimensions of left R-modules, and in the
second we consider flat dimensions of right R-modules.

15.4. Hilbert’s syzygy theorem. Our next goal, the last one in the course, is to
give a proof of the following theorem.

Theorem 15.11 (Hilbert’s syzygy theorem). Let F be a field, and consider the
polynomial ring F[x1, . . . , xn] in n variables. Then

rdim(F[x1, . . . , xn]) = ldim(F[x1, . . . , xn]) = n.

We note that, since F[x1, . . . , xn] is commutative, the categories F[x1,...,xn]Mod and
ModF[x1,...,xn] of left and right modules are isomorphic, and thus rdim(F[x1, . . . , xn]) =
ldim(F[x1, . . . , xn]). Hilbert proved in 1890 a statement that can be reformulated
as follows: every ideal J in the polynomial ring F[x1, . . . , xn] admits a free res-
olution of length at most n − 1. Hilbert’s statement implies immediately that
pd(F[x1, . . . , xn]/J) ≤ n for all ideals J ⊆ F[x1, . . . , xn], and thus by Theorem 15.4
we obtain the inequality rdim(F[x1, . . . , xn]) = ldim(F[x1, . . . , xn]) ≤ n; the fact
that equality holds requires another additional argument, and you are more than
invited, in order to satisfy your desire of knowledge about history of mathematics,
to read Hilbert’s original article “Über die Theorie der algebraischen Formen” and
determine whether Hilbert also proved a statement which, reformulated in modern
terms, gives the equality rdim(F[x1, . . . , xn]) = ldim(F[x1, . . . , xn]) = n.
We will derive Theorem 15.11 from a more general statement; before stating a
proposition, we need a definition.

Definition 15.12. Let R be an associative ring. We denote by R[x] the ring of
polynomials in one variable x. An element of R[x] has the form f(x) = rkx

k+ · · ·+
r1x+ r0, with r0, . . . , rk ∈ R; as an additive group, R[x] is isomorphic to

⊕
i≥0R.

The product is defined by setting on monomials by the rule (rkx
k) · (rhx

h) =
(rkrh)xk+h (note that in the last equality we have formally swapped xk with rh),
and is extended bi-additively to all polynomials.

Exercise 15.13. We can also define R[x] by a universal property: it is a ring S̄ with
a specified map ī : R → S̄ and with a specified element x, such that ī(r)x = xī(r)
for all r ∈ R, and such that the triple (S̄, x, ī) is universal among triples (S, y, i)
with i : R → S a map of rings and y an element in S satisfying i(r)y = yi(r) for
all r ∈ R. Think about the details of the approach to define R[x] by universal
property, especially formulate explicitly the universal property (and check that it
holds for the usual R[x]).

We can now state the main proposition

Proposition 15.14. Let R be a ring. Then ldim(R[x]) = ldim(R)+1; in particular,
either side of the equality is infinite if and only if also the other side is infinite.

We stated Proposition 15.14 in the context of possibly non-commutative rings be-
cause this is the level of generality in which (without much more effort) it can be
proved; nevertheless, in order to show Theorem 15.11, we only need the “commu-
tative” part of Proposition 15.14.
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Proof of Theorem 15.11 assuming Proposition 15.14. We prove the theorem by in-
duction on n. For n = 0, we note that a field F satisfies ldim(F ) = 0, as every (left)
F-module is free. Assuming the statement for n = k−1 ≥ 0, we then note that if we
set R := F[x1, . . . , xk−1], then there is an isomorphism of rings R[x] ∼= F[x1, . . . , xk],
by identifying x with the variable xk.
We have a sequence of equalities, the third of which follows from Proposition 15.14:

ldim(F[x1, . . . , xk]) = ldim(R[x]) = ldim(R) + 1 = (k − 1) + 1 = k,

i.e. the statement also holds for n = k. �

The proof of Proposition 15.14 will be the object of the rest of this lecture and the
next lecture. The analogue statement that rdim(R[x]) = rdim(R)+1 can be proved
by similar arguments, but we will focus on left modules. Whenever we consider a
projective dimension of a module, we will use the ring as an index in order to stress
over which ring we are considering the module (this was unnecessary until now, as
we were basically always working with a single ring).

Definition 15.15. Let M be a left R-module. We denote by M [x] the left R[x]-
module R[x]⊗RM , obtained by tensoring M with the R[x]−R-bimodule R[x]; here
we consider R[x] as a right R-module by using the inclusion of rings R ↪→ R[x].

Lemma 15.16. Let M be a left R-module; if M is projective over R, then M [x] is
projective over R[x]. Let N be a left R[x]-module; if N is projective over R[x], then
N , considered as a left R-module by restriction of scalars, is projective over R.

Proof. Assume first that M is projective over R, and hence that there is an iso-
morphism of left R-modules M ⊕ P =

⊕
i∈I R; tensoring on left with R[x], and

remembering that tensor products are distributive with respect to direct sums, we
obtain an isomorphism of left R[x]-modules

M [x]⊕ P [x] ∼= R[x]⊗RM ⊕R[x]⊗R P ∼= R[x]⊗R

(⊕
i∈I

R

)
∼=
⊕
i∈I

R[x]

and hence M [x] is also projective over R[x].
Assume now that N is projective over R[x], and hence there is an isomorphism of
left R[x]-modules N ⊕ Q ∼=

⊕
i∈I R[x]. Recall that the map of rings R ↪→ R[x]

induces a functor R[x]Mod→ RMod by restriction of scalars. In particular, we can
consider N ⊕ Q ∼=

⊕
i∈I R[x] also as an isomorphism of left R-modules. We then

note the following isomorphism of R-modules: R[x] ∼=
⊕∞

j=0R.
Putting everything together, we have an isomorphism of left R-modules

N ⊕Q ∼=
⊕
i∈I

∞⊕
j=0

R

and hence N is projective over R. �

Lemma 15.17. Let M be a left R-module; then pdR(M) = pdR[x](M [x]).

Proof. We prove that, for an integer n ≥ 0, the inequality pdR(M) ≤ n holds if and
only if the inequality pdR[x](M [x]) ≤ n holds; once this is proved, the statement
follows immediately.
Suppose first pdR(M) ≤ n; then we can find a projective resolution

· · · → 0→ Pn → · · · → P1 → P0 → 0 . . .
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of M over R of length n (we may have Pi = 0 for some values of i towards the
left end of the resolution). We can adjoin M to the previous and obtain an exact
sequence of left R-modules

· · · → 0→ Pn → · · · → P1 → P0 →M → 0 . . .

Tensoring with R[x] over R, and recalling that R[x] is free as a right R-module
(hence flat), we obtain an exact sequence

· · · → 0→ Pn[x]→ · · · → P1[x]→ P0[x]→M [x]→ 0 . . . .

By Lemma 15.16 the modules Pi[x] are projective over R[x], and hence the previous,
after removing M [x], can be regarded as a projective resolution of M [x] over R[x]
of length n, witnessing pdR[x](M [x]) ≤ n.

Viceversa, suppose that pdR[x](M [x]) ≤ n, and fix now a projective resolution

· · · → 0→ Qn → · · · → Q1 → Q0 → 0 . . .

of M [x] over R[x] of length n. We can adjoin M [x] to the previous and obtain an
exact sequence of left R[x]-modules

· · · → 0→ Qn → · · · → Q1 → Q0 →M [x]→ 0 . . . ;

applying the restriction of scalar functor R[x]Mod → RMod we can consider the
previous also as an exact sequence of left R-modules; by Lemma 15.16 each Qi is
projective over R, and hence we conclude that pdR(M [x]) ≤ n.
We then notice that M [x] is isomorphic to

⊕∞
j=0M as a left R-module; it follows

that there is an isomorphism of functors

Extn+1
R (M [x],−) ∼=

∞⊕
j=0

Extn+1
R (M,−) : RMod→ ZMod;

the inequality pdR(M [x]) ≤ n implies52 that Extn+1
R (M [x],−) is the zero functor;

hence all direct summands of
⊕∞

j=0 Extn+1
R (M,−) are the zero functor, and this

implies in turn, by the argument of the proof of Proposition 14.18, that pdR(M) ≤
n. �

A mild, direct consequence of Lemma 15.17 is that ldim(R[x]) ≥ ldim(R); in partic-
ular, if ldim(R) =∞, then also ldim(R[x]) =∞, and the statement of Proposition
15.14 holds; hence it doesn’t harm, from now on, to assume that ldim(R) is finite.

Lemma 15.18. Let N be a left R[x]-module, and consider N also as a left R-
module by restriction of scalars. Then there exists a SES of left R[x]-modules of
the form

N [x] N [x] N,ι π

featuring the left R[x]-modules N [x] = R[x]⊗R N .

Proof. We define π : N [x] → N to be the map sending f(x) ⊗m 7→ f(x) ·m, for
all m ∈ N and all polynomials f(x) ∈ R[x]53. Since 1 ⊗ m 7→ m, the map π is
surjective.
An element in N [x] = R[x] ⊗R N can be written in a unique way as a finite
sum

∑∞
i=0 x

i ⊗mi, with mi ∈ N : this uses the direct sum decomposition N [x] ∼=

52Is in fact equivalent.
53In fact, we should first define an R-bilinear map R[x] × N → N by (f(x),m) 7→ f(x) ·m,

then use the universal property of the tensor product
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i=0N , which is an isomorphism of left R-modules. We define ι : N [x]→ N [x] by

the following formula, where all tensors are over R:

k∑
i=0

xi ⊗mi 7→
k∑
i=0

xi · (1⊗ (x ·mi)− x⊗mi) =

k∑
i=0

(
xi ⊗ (x ·mi)− xi+1 ⊗mi

)
= 1⊗ (x ·m0) +

k∑
i=1

(
xi ⊗ (x ·mi −mi−1)

)
− xk+1 ⊗mk.

Note that the last expression gives the value
(∑k

i=0 x
i ⊗mi

)
ι again in the normal

form corresponding to the isomorphism of left R-modules N [x] ∼=
⊕∞

i=0N .

The map ι is injective: suppose that the element
∑k
i=0 x

i⊗mi is sent to zero by ι,

then the component −xk+1 ⊗mk in the last expression for
(∑k

i=0 x
i ⊗mi

)
ι must

vanish: it follows that mk = 0; we then argue that also xk ⊗ (x ·mk −mk−1) must

vanish, as it is one component of
(∑k

i=0 x
i ⊗mi

)
ι; we already know that mk = 0,

hence we conclude that also mk−1 = 0. We proceed inductively until we obtain
that m0 = 0; the fact that 1⊗ (x ·m0) = 0 is then automatic, and we conclude that

our source element
∑k
i=0 x

i ⊗mi was zero in N [x].
The composition ι ◦ π is the zero map, as it is straightforward to check from the

formulas. To prove that ker(π) = Im(ι), let
∑k
i=0 x

i ⊗mi ∈ N [x] and note that up
to adding and subtracting elements in Im(ι) we can transform our element into one
of the form 1⊗m′0: we first eliminate the summand xk⊗mk by adding the element
xk−1 ⊗ (x ·mk) − xk ⊗mk =

(
xk−1 ⊗mk

)
ι: this results in changing the k − 1st

component of the sum from xk−1⊗mk−1 to xk−1⊗(mk−1 +x·mk); the new element
can be expressed as a sum of smaller length, and repeating this procedure k times we

obtain an element of the form 1⊗m′0. If our original element
∑k
i=0 x

i⊗mi ∈ N [x]
is sent to zero by π, then we also have (1 ⊗ m′0)π = m′0 = 0, and therefore our
original element was in fact in the image of ι. �

As a consequence of the previous Lemma, we can prove the inequality ldim(R[x]) ≤
ldim(R) + 1, which is half of Proposition 15.14. Assume n := ldim(R) is finite, and
let N be a left R[x]-module. We want to show that pdR[x](N) ≤ n + 1. By
the argument of the proof of Proposition 14.18, this is equivalent to showing that
the functor Extn+2

R[x](N,−) : R[x]Mod → ZMod is the zero functor. Let therefore

N ′ ∈ R[x]Mod be another module, and let us try to prove that Extn+2
R[x](N,N

′) = 0.

We can now regard the latter group as the image ofN along the functor Extn+2
R[x](−, N

′).

The SES of left R[x]-modules N [x] → N [x] → N from Lemma 15.18 gives rise to
a long exact sequence of ExtR(−, N ′)-groups, containing in particular the triple of
groups Extn+1

R[x](N [x], N ′)→ Extn+2
R[x](N,N

′)→ Extn+2
R[x](N [x], N ′). Since pdR[x](N [x]) =

pdR(N) ≤ n by Lemma 15.17, the two external groups vanish; it follows that also
the middle group vanishes.

16. The other half of Proposition 15.14, an example, Serre’s theorem

For a ringR we have proved the inequality ldim(R[x]) ≤ ldim(R)+1; we want now to
prove the opposite inequality, and it suffices to prove ldim(R[x]) ≥ ldim(R)+1 in the
case in which both terms are finite (if they are both infinite, then our convention is
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that∞ ≥∞). We set therefore n := ldim(R) ≥ 0. In order to prove ldim(R) ≥ n+1
it suffices to prove that there exists a left R[x]-module with projective dimension
n+ 1.
Following [Rot 8.2], we try to prove a statement (Proposition 16.7) which is a bit
more general and applies to more situations than just the couple of rings R and
R[x].

Example 16.1. Let S be a ring and let x ∈ S be a central element, i.e. xs = sx
for all s ∈ S. Then the left ideal (x) ⊆ S coincides with the right ideal (x) ⊆ S, and
also with the bilateral ideal (x) ⊆ S. The quotient abelian group S/(x) inherits a
ring structure from S, such that the projection to the quotient p : S → S/(x) is a
surjective homomorphism of rings.

Example 16.2. Suppose that x ∈ S× is a unit; then (x) coincides with the entire
S, and thus S/(x) is the zero ring.

Example 16.3. The element x ∈ R[x] is central. Moreover R[x]/(x) is isomorphic
to the ring R, and by a slight abuse of notation we also call p the surjective ring
homomorphism R[x]→ R given by evaluating polynomials at x = 0.

Notation 16.4. Let S and x be a in Example 16.1; then the map of rings p : S →
S/(x) gives rise to an exact functor p∗ : S/(x)Mod→ SMod by restriction of scalars.

The fact that p is a surjective homomorphism of rings has a consequence: the
functor p∗ is fully faithful : for any two left S/(x)-modules M,M ′ we have that a
map of sets f : M →M ′ is S/(x)-linear if and only if the same map, considered as
a map between the S-modules p∗M → p∗M ′, is S-linear.

Notation 16.5. In the other direction, we have a functor p∗ : SMod→ S/(x)Mod:
this is given by considering S/(x) as a S/(x) − S-bimodule (the right S-module
structure being given by the homomorphism of rings p), and by considering the
functor S/(x)⊗S −.

Concretely, if N is a left S-module, then xN ⊂ N (i.e. the subset of multiples of
x in N) is a left sub-S-module of N (here we use that x is central in S), and the
quotient S-module N/xN is isomorphic, as a left S-module, to p∗(N) ∈ S/(x)Mod.

Exercise 16.6. Prove that the functor p∗ is left adjoint to the functor p∗: i.e. we
have an adjunction

p∗ : SMod S/(x)Mod: p∗

The following is [Rot, Proposition 8.39].

Proposition 16.7 (Kaplansky). Let S be a ring, let x ∈ S be a central element,
and suppose that x is neither a unit nor a zero-divisor54. Let M be a (non-zero)
left S/(x)-module such that pdS/(x)(M) = n is finite. Then pdS(p∗M) = n+ 1.

Before proving Proposition 16.7, we note that it immediately helps us in our pur-
poses: for if M is a left R-module with pdR(M) = n (such a module exists because
we assumed n = ldim(R)), then p∗(M) is an example of a left R[x]-module with
pdR[x](M) = n + 1, implying that ldim(R[x]) ≥ n + 1, which is exactly what we

54In general, for a non-commutative ring, one has to distinguish a notion of left zero divisor
and one of right zero divisor ; since x is central, however, it is a left zero divisor if and only if it

is a right zero divisor.
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wanted to show. The hypothesis that x is not a unit in S is only used to exclude
that S/(x) is the zero ring, and thus that every S/(x)-module is the zero module.

Proof of Proposition 16.7. We prove the proposition by induction on n ≥ 0.

• Suppose first n = 0, i.e. every S/(x)-module is projective, in particular M .
Surely p∗M cannot be projective over S: for the multiplication map x ·− is
injective on every free left S-module, and by restriction it is injective also
on each submodule of a free left S-module, in particular on a projective
S-module which can be exhibited as a direct summand of a free S-module.
Now remember that p∗M is a non-zero module, but x · − is the zero map
p∗M → p∗M : hence p∗M is not projective over S.

By the hypothesis that x is not a zero-divisor we also get a SES of left
S-modules

S S S/(x),·x p

and this can be considered as a free resolution of S/(x) over S of length 1,
hence pdS(S/(x)) ≤ 1. Similarly, for every free left S/(x)-module F , we
obtain a free resolution of p∗F over S of length 1, by taking a suitable direct
sum of copies of the above resolution of S/(x): it follows that pdS(p∗F ) ≤ 1.
Now we assumed that M is projective over S/(x), hence we may find a free
S/(x)-module F and a decomposition F ∼= M ⊕M ′ of left S/(x)-modules;
applying p∗ we obtain a decomposition p∗F ∼= p∗M ⊕ p∗M ′ of left S-
modules. By the proof of Proposition 14.18 the inequality pdS(p∗F ) ≤ 1
is equivalent to the vanishing of the functor Ext2

S(p∗F,−); this functor can
be written as a direct sum of functors

Ext2
S(p∗F,−) ∼= Ext2

S(p∗M,−)⊕ Ext2
S(p∗M ′,−);

it follows that also the functor Ext2
S(p∗M,−) vanishes, and hence, again by

the proof of Proposition 14.18, we obtain pdS(p∗M) ≤ 1 as desired.
• Suppose now n = 1. Fix a SES of left S/(x)-modules K → F → M

with F free; note that the hypothesis pdS/(x)(M) = 1, together with the
algorithm relying on Schanuel’s lemma, imply that K is projective over
S/(x). The previous step of the induction gives pdS(p∗K) = 1. Exactly
as in the previous case, we also show that pdS(p∗(F )) ≤ 1, by exhibiting a
free resolution of F over S of length 1. We first claim that pdS(p∗M) ≤ 2;
this is equivalent by the proof of Proposition 14.18 to the vanishing of
Ext3

S(p∗M,N) for all N ∈ SMod; this can in turn be checked by the long
exact sequence associated with the SES p∗K → pF → p∗M and the functors
ExtS(−, N): we have one piece reading

. . .Ext2
S(p∗K,N) Ext3

S(p∗M,N) Ext3(p∗F,N) . . .

and the vanishing of the outer groups implies the vanishing of the middle
group. Great! Our purpose is to show pdS(p∗M) = 2 and we just checked

pdS(p∗M) ≤ 2! Now fix a SES of left S-modules L
i→ F ′

p→ p∗M , with
F ′ free over S; without loss of generality, assume that L ⊂ F ′ is a sub-S-
module. Consider also the sub-S-module xF ′ ⊂ F ′: by S-linearity of p we
have, for all m ∈ F ′, (xm)p = x((m)p) = 0, because x · − is the zero map
on p∗M . It follows that xF ′ ⊆ ker(p) = L. We have thus inclusions of left
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S-modules xL ⊆ xF ′ ⊆ L ⊆ F ′. Our first aim is to show that L/xL = p∗L
is not projective over S/(x): this will take a little time.

The following can be regarded both as a SES of left S-modules

L/xF ′ F ′/xF ′ p∗M

or can be rewritten in a more fancy way to give a SES of left S/(x)-modules

Λ p∗F
′ M,

by defining Λ = L/xF ′, with the induced S/(x)-module structure (the
quotient L/xF ′ is in fact a left S-module on which x · − is the zero map).
We assumed that pdS/(x)(M) = 1, and since p∗F

′ = S/(x)⊗SF ′ is a free left

S/(x)-module, we have that Λ must be projective (think of the algorithm
to compute pdS/(x)(M)). Consider now the following SES of left S/(x)-

modules, where xF/xL is given the natural structure of S/(x)-module (it
is indeed an S-module on which x · − is the zero map):

xF ′/xL L/xL = p∗L Λ = L/xF ′.

Since Λ is projective over S/(x), we obtain an isomorphism of left S/(x)-
modules p∗L ∼= xF ′/xL ⊕ Λ. Now use that x is a non-zero divisor, hence
x ·− is injective on F ′ and hence, by restriction, on L ⊂ F ′: thus xF ′ ∼= F ′

(as S-modules), xL ∼= L and xF ′/xL ∼= F ′/L ∼= p∗M as S-modules; but for
two left S/(x)-modules it is equivalent to be isomorphic as S/(x)-modules,
or as S-modules after applying p∗. We conclude that p∗L = L/xL admits a
direct sum decomposition (over S/(x)) one of whose summands is M . This
implies directly that pdS/(x)(p∗L) ≥ pdS/(x)(M) = 1, and in particular

L/xL is not projective over S/(x).
Now suppose by absurd that L is projective over S; then there is an

isomorphism L ⊕ Q ∼= F ′′ for some free S-module F ′′; applying p∗ we
would obtain p∗L⊕ p∗Q ∼= p∗F

′′ with p∗F
′′ = F ′′/xF ′′ being a free S/(x)-

module: it would follow that p∗L is projective, which is exactly what we
just proved is not the case! Hence L is not projective. Now the algorithm
looks at our SES of S-modules L → F ′ → p∗M and instead of returning
pdS(p∗M) = 1 (as it would do if L were projective), it continues at least
another step: thus pdS(p∗M) ≥ 2, which together with the previous part
of the argument finally shows that pdS(p∗M) = 2.
• Don’t worry, the difficult part is already over! Assume now n ≥ 2, and fix

again a SES of S/(x)-modules K → F → M with F free. The algorithm
tells us that pdS/(x)(K) = n−1, and the inductive hypothesis applied to K

tells us that pdS(p∗K) = n−1+1 = n. Recall also that pdS(p∗F ) ≤ 1, once
again by exhibiting a concrete free resolution of p∗F over S of length 1. In
particular the functors ExtiS(p∗F,−) vanish for i ≥ n (here it is crucial that
n ≥ 2, and that’s also why we had to suffer so much on the case n = 1!).

Let now N be a left S-module, and consider the long exact sequence
of ExtS(−, N) groups associated with the SES of left S-modules p∗K →
p∗F →M : inside it we find, for all i ≥ n, short pieces of the form

. . .ExtiS(p∗F,N) ExtiS(p∗K,N) Exti+1
S (p∗M,N) Exti+1

S (p∗F,N) . . .
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For i ≥ n + 1 all of the above terms, except possibly Exti+1
S (p∗M,N),

are known to vanish, again because pdS(p∗F ) ≤ 1 and pdS(p∗K) = n:
it follows that also Exti+1

S (p∗M,N) = 0, hence Exti+1
S (p∗M,−) is the zero

functor for all i ≥ n+1, which implies immediately that pdS(p∗M) ≤ n+1.
For i = n instead, only the terms ExtnS(p∗F,N) and Extn+1

S (p∗F,N) are
known to vanish; in fact, since pdS(p∗K) = n, the functor ExtnS(p∗K,−)
is not the zero functor, hence we can assume to have chosen N such
that ExtnS(p∗K,N) 6= 0; exactness gives us in this case an isomorphism
ExtnS(p∗K,N) ∼= Extn+1

S (p∗M,N), but then the same module N witnesses

that Extn+1(p∗M,−) is not the zero functor, and hence pdS(p∗M) ≥ n+1.

�

We have thus completed the proof of Proposition 15.14, which in turn implies
Theorem 15.11.

Example 16.8. Let F be a field, and consider R = F[x, y] as a ring, and M =
F[x, y]/(x, y) as an R-module. Set P0 = R: we have a surjective quotient map
R→M with K0 = (x, y) as kernel; in particular the following is exact:

. . . 0 K0 = (x, y) P0 = R M 0

Set P1 = R⊕R, call X and Y the generators, and define a surjective map dP1 : P1 →
K0 by sending X 7→ x ∈ P0 and Y 7→ y ∈ P0. The kernel K1 of dP1 is generated by
the element yX−xY ∈ P1, and is a free R-module on one generator. In particular,
setting P2 = K1, the following is a free resolution of M of length 2:

. . . 0 P2 = R 〈yX − xY 〉 P1 = R 〈X〉 ⊕R 〈Y 〉 P0 = R 0 . . .
dP2 dP1

Exercise 16.9. Can you generalise the previous example to R = F[x1, . . . , xn] and
M = F[x1, . . . , xn]/(x1, . . . , xn)? Here are some hints.

• For all 1 ≤ i ≤ n there is a resolution of Mi := F[xi]/(xi) over F[xi] of

length 1 given by . . . 0→ F[xi] = P
(i)
1
·xi→ F[xi] = P

(i)
0 → 0 . . . .

• The tensor product over F is our best friend: every F-module is flat, so we
imagine not to lose exactness, where needed, by tensoring over F.
• In what sense M = M1⊗F · · · ⊗FMk? First, make sense of this long tensor

product; second, make sense of the fact that the single tensor factors are
just modules over the small rings F[xi], but the result should be a module
over the big ring R.

• Make sense of the expression “Tot(P
(1)
• ⊗F . . . P

(n)
• )” as a chain complex of

R-modules of length n; prove that it is a projective resolution, over R, of
M .

16.1. Serre’s theorem on global dimension of local Noetherian rings. We
conclude the course by understanding the following statement, whose proof we omit.

Theorem 16.10 (Serre). Let R be a commutative Noetherian local ring. Then
there are two possibilities:

• either R is not regular, in which case ldim(R) =∞55;

55We use ldim, but in the commutative context rdim would be the same...
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• or R is regular, in which case ldim(R) is finite and is equal to the Krull
dimension of R.

I emphasized the words that we have not encountered yet in the course: these words
have in fact not much to do directly with homological algebra, and for this reason
the previous theorem should be surprising.

Definition 16.11. Let R be a (non-zero) commutative ring. An ideal in R is a
subset I ⊂ R which is also a (proper) sub-R-module, i.e. I 6= R. We say that R is
Noetherian if every ideal is a finitely generated R-module.

Definition 16.12. An ideal I ⊂ R is a prime ideal if the following hold: for every
x, y ∈ R \ I, we have xy ∈ R \ I.
The Krull dimension of a commutative ring R is the supremum of all n ≥ 0 for
which one can find a sequence of prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pn ⊂ R, with all
containments being inequalities.

Definition 16.13. An ideal I ⊂ R is a maximal ideal if there exist no ideal J ⊂ R
with I ⊂ J (and I 6= J). We say that R is local if it has a unique maximal ideal56.

In general, if R is a commutative Noetherian local ring with maximal ideal M ⊂ R,
then one can prove that M cannot be generated by less than n elements, where n is
the Krull dimension of R. This should be surprising, because at first glance there
is no connection between the problems of finding long chains of prime ideals in R,
and finding small sets of generators for M .

Definition 16.14. We say that a Noetherian local ring R is regular if the max-
imal ideal M can be generated by exactly n of its elements, where n is the Krull
dimension of R.

Example 16.15. Consider the ring R = Z/4; it has two ideals: one is ([0]4), the
other is the ideal M = ([2]4), which is therefore the unique maximal ideal: R is
local. Since R is finite as a set, it is clearly Noetherian. The ideal ([0]4) is not
a prime ideal, as the product [2]4[2]4 = [0]4 witnesses. It follows that the Krull
dimension of R is 0, exhibited by setting P0 = M and acknowledging that a longer
chain of prime ideals just doesn not exist.
If R were regular, we could generate M by... zero elements! That is, M should be
the zero ideal; this is not the case, hence we conclude that R is not regular.
Serre’s theorem implies that ldim(Z4) =∞. Does it remind you of anything? Yes!

We already proved that TorZ/4n (Z/2,Z/2) ∼= Z/2 6= 0 for all n ≥ 0, and have thus
already checked that ldim(Z4) = ∞. Thus Serre’s theorem (first part) generalises
this example we already saw.

For a commutative ring R and a prime ideal P ⊂ R, note that S = R \ P is a
multiplicative subset of R, and thus we can form the localisation S−1R; it turns
out that the localisation S−1R... is a local ring! If R was Noetherian, also the
localisation is Noetherian.
For a generic commutative Noetherian ring R one has the following formula:

ldim(R) = sup
{

ldim(S−1R) | S = R \ P for a prime ideal P ⊂ R
}
.

56One can use Zorn Lemma and prove that every commutative ring R has at least one maximal
ideal.
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